954

Holzminden - Beverungen
Holzminden - Boffzen - Fiirstenberg - Beverungen

RBB - Regionalbus Braunschweig GmbH:, Tel.: 0531 48 28 30 99; www.rbb-bus.de

Montag - Freitag Samstag

Verkehrsbeschrankung SN FN SN FN SN FN
Hinweis AH AHv L3 L3
Holzminden, Schulzentrum 11:25 12:25 13:25
Holzminden, Haarmannplatz 09:30 11:30 11:30 12:30 12:30 13:30 13:30 15:35 17:00 18:40{08:30 12:30
Holzminden, Bahnhof 09:34 11:34 11:34 12:34 12:34 13:34 13:34 15:39 17:04 18:44(08:34 12:34
Holzminden, Lindenhof 09:36 11:36 11:36 12:36 12:36 13:36 13:36 15:41 17:06 18:46|08:36 12:34
Holzminden, Stiebel-Eltron 09:38 11:38 11:38 12:38 12:38 13:38 13:38 15:43 17:08 18:48(08:38 12:38
Holzminden, Stadtgrenze 09:39 11:39 11:39 12:39 12:39 13:39 13:39 15:44 17:09 18:49|08:39 12:39
Hx-Liichtringen, Feuerwehr 09:41 11:41 11:41 12:41 12:41 13:41 13:41 15:46 17:11 18:51(08:41 12:41
Hx-Liichtringen, Bahnhof 09:42 11:42 11:42 12:42 12:42 13:42 13:42 15:47 17:12 18:52(08:42 12:42
Hx-Liichtringen, Heidebrink 09:44 11:44 11:44 12:44 12:44 13:44 13:44 15:49 17:14 18:54|08:44 12:44
Boffzen, Gasthaus Steinkrug 09:47 11:47 11:47 12:47 12:47 13:47 13:47 15:52 17:17 18:57(08:47 12:47
Boffzen, Firma Bach 09:49 11:49 11:49 12:49 12:49 13:49 13:49 15:54 17:19 18:59(08:49 12:49
Boffzen, Schule 12:51 12:51
Boffzen, PoststralRe 12:53 12:53
Boffzen, Radstaken 09:50 11:50 11:50 12:54 12:54 13:50 13:50 15:55 17:20 19:00{08:50 12:50
Fiirstenberg, Neue Stralle 09:53 11:53 11:53 12:57 12:57 13:53 13:53 15:58 17:23 19:03|08:53 12:53
i ; : : : : : : :59 17:24 19:04]08:54 12:54
556 Boffzen, Miihlengrube ab| 06:58 07:36 09:48 11:48 12:48 13:48 15:48 16:53 18:53| 08:48 12:53
556 Haxter, Bahnhof / Rathaus ab| 06:55 07:33 09:45 11:45 12:45 13:45 15:45) 18:50|08:45 12:50

(i 07:04 07:42 09:54 11:56 12:56 13:54_15:58 16:59 18:59| 08: ¥
Fiirstenberg, HuBmannplatz ab|07:04 07:42 09:54 11:56 11:56 13:00 13:00 13:54 13:54 15:59 17:24 19:04{08:54 12:59
Fiirstenberg, Derentaler StraRe 07:05 07:43 09:55 11:57 11:57 13:01 13:01 13:55 13:55 16:00 17:25 19:05|08:55 13:00
Fiirstenberg, Sportheim) 11:58 11:58 13:02 13:02
Derental, Lange StraRBe 07:50
Derental, Fiirstenberger Strae 07:11 07:49 10:01 12:04 12:04 13:08 13:08 14:01 14:01 16:06 17:31 19:11]|09:01 13:06
Derental, Lange StralBe 07:12 10:02 12:05 12:05 13:09 13:09 14:02 14:02 16:07 17:32 19:12|09:02 13:07
Lfd-Meinbrexen, Am Hahnenholz 07:15 07:53 10:02 12:08 12:08 13:12 13:12 14:05 14:05 16:10 17:35 19:15({09:05 13:10
Lfd-Meinbrexen, Kirche 07:16 07:54 10:06 12:09 12:09 13:13 13:13 14:06 14:06 16:11 17:36 19:16{09:06 13:11
Lauenférde, Bahnhof 07:21 07:59 10:11 12:14 12:14 13:18 13:18 14:11 14:11 16:16 17:41 19:21|09:11 13:16
Lauenforde, Feuerteich 07:23 08:01 10:13 12:16 12:16 13:20 13:20 14:13 14:13 16;18 17:43 19:23|09:13 13:18
Lauenférde, Schule) 08:03
Lauenférde, Kirche 07:24 08:05 10:14 12:17 12:17 13:21 13:21 14:14 14:14 16:19 17:44 19:24|109:14 13:19
Beverungen, ZOB An der Burg 07:26 08:07 10:16 12:19 12:19 13:23 13:23 14:16 14:16 16:21 17:46 19:26{09:16 13:21
Beverungen, Schulzentrum 07:30 08:11 10:20 12:23 12:23 13:27 13:27 14:20 14:20 16:25 17:50 09:20 13:25

FN Nurin den Ferienzeiten von Niedersachsen

SN wihrend der Schulzeit Niedersachsen

AH von Hoxter

v Bus fahrt Haltestellen in anderer Reihenfolge an

L3 Linientaxi - begrentes Platzangebot

954

Beverungen - Holzminden
Beverungen - Fiirstenberg - Boffzen - Holzminden

RBB - Regionalbus Braunschweig GmbH:, Tel.: 0531 48 28 30 99; www.rbb-bus.de

Montag - Freitag

Hinweis NH
Beverungen, ZOB An der Burg 05:30
Lauenforde, Kirche 05:32
Lauenforde, Feuerteich 05:33
Lauenférde, Bahnhof 05:35
Lfd-Meinbrexen, Kirche 05:40
Lfd-Meinbrexen, Am Hahnenholz 05:41
Derental, Lange StralBe 05:44
Derental, Fiirstenberger Stra3e 05:45
Fiirstenberg, Derentaler StraRe 05:51
Eiirstenberg, HuBmannplatz an|05:52
556 Fiirstenberg, HuBmannplatz ~ ab| 05:52
556 Boffzen, Miihlengrube an| 05:58

NH nach Hoxter

554 Beverungen - Holzminden

Beverungen - Fiirstenberg - Boffzen - Holzminden

RBB - Regionalbus Braunschweig GmbH:, Tel.: 0531 48 28 30 99; www.rbb-bus.de

Montag - Freitag Samstag
Verkehrsbeschrénkung SN _FN SN FN
Hinweis NH NH L3 L3
Beverungen, Schulzentrum 06:03 06:06 07:32 07:32 08:31 11:21 12:30 13:31 15:50 17:31/09:31 13:31
Beverungen, ZOB An der Burg 06:07 06:10 07:36 07:36 08:35 11:25 12:34 13:35 15:54 17:35({09:35 13:35
Lauenférde, Kirche 06:10 06:13 07:38 07:38 08:37 11:27 12:36 13:37 15:56 17:37(09:37 13:37
Lauenforde, Schule) o)))) 1238) 1557) |))
Lauenforde, Feuerteich 06:12 06:15 07:39 07:39 08:38 11:28 12:40 13:38 16:00 17:38(09:38 13:38
Lauenférde, Bahnhof 06:14 06:17 07:41 07:41 08:40 11:30 12:42 13:40 16:02 17:40{09:40 13:40
Lfd-Meinbrexen, Kirche 06:19 06:22 07:46 07:46 08:45 11:35 12:47 13:45 16:07 17:45|09:45 13:45
Lfd-Meinbrexen, Am Hahnenholz 06:20 06:23 07:47 07:47 08:46 11:36 12:48 13:46 16:08 17:46(09:46 13:46
Derental, Lange StralBe 06:24 06:27 07:50 07:50 08:49 11:39 12:51 13:49 16:11 17:49(09:49 13:49
Derental, Fiirstenberger Strale 06:26 06:29 07:51 07:51 08:50 11:40 12:52 13:50 16:12 17:50{09:50 13:50
Fiirstenberg, Derentaler Strale 06:33 06:36 07:57 07:57 08:56 11:46 12:58 13:56 16:18 17:56{09:56 13:56
Eiirstenberg, HuBmannplatz an|06:34 06:37 07:58 07:58 08:57 11:47 12:59 13:57 16:19 17:57109:57 13:57
556 Fiirstenberg, HuBmannplatz ab 06:40 08:04 08:57 11:57 12:59 13:57 17:57|09:57
556 Boffzen, Miihlengrube 06:46 08:10 09:03 12:03 13:05 14:03 18:03| 10:03
556 Hixter, Bahnhgf(ﬁgthgug gn 09:06 12:06 14:06 18:06| 10:06
Fiirstenberg, HuBmannplatz ab(06:34 06:37 07:58 07:58 11:47 13:57 14:22 16:19 17:57(09:57 13:57
Fiirstenberg, Neue Stralle 06:35 06:38 07:59 07:59 11:48 13:58 14:23 16:20 17:58(09:58 13:58
Boffzen, Radstaken 06:39 06:42 08:02 08:02 11:51 14:01 14:26 16:23 18:01(10:01 14:01
Boffzen, Schule 06:41
Boffzen, PoststralRe 06:43
Boffzen, Firma Bach 06:46 06:43 08:03 08:03 11:52 14:02 14:27 16:24 18:02(10:02 14:02
Boffzen, Gasthaus Steinkrug 06:48 06:45 08:05 08:05 11:54 14:04 14:29 16:26 18:04(10:04 14:04
Hx-Liichtringen, Heidebrink 06:53 06:50 08:07 08:07 11:56 14:06 14:31 16:28 18:06(10:06 14:06
Hx-Liichtringen, Bahnhof 06:55 06:52 08:09 08:09 11:58 14:08 14:33 16:30 18:08(10:08 14:08
Hx-Liichtringen, Feuerwehr 06:56 06:53 08:10 08:10 11:59 14:09 14:34 16:31 18:09|10:09 14:09
Holzminden, Stadtgrenze 06:58 06:55 08:12 08:12 12:01 14:11 14:36 16:33 18:11(10:11 14:11
Holzminden, Stiebel-Eltron 07:00 06:57 08:13 08:13 12:02 14:12 14:37 16:34 18:12(10:12 14:12
Holzminden, Fiirstenberger Str. 07:01 06:58 08:14 08:14 12:03 14:13 14:38 16:35 18:13|10:13 14:13
Holzminden, Lindenhof 07:02 06:59 08:15 08:15 12:04 14:14 14:39 16:36 18:14|10:14 14:14
Holzminden, Bahnhof 07:04 07:01 08:17 08:17 12:06 14:16 14:41 16:38 18:16(10:16 14:16
Holzminden, BahnhofstraRe 07:06
Holzminden, Haarmannplatz) 07:05 08:21 08:21 12:10 14:20 14:45 16:42 18:20(10:20 14:20
Holzminden, Schulzentrum 07:35 08:26

FN Nurin den Ferienzeiten von Niedersachsen SN wahrend der Schulzeit Niedersachsen L3 Linientaxi - begrentes Platzangebot NH nach Hoxter

The XgIEX Companion
TeX meets OpenType and Unicode

Edited by Michel Goossens (CERN)

Work in progress. Version January 11,2010

Please send your comments to michel.goossens@cern.ch

©Michel Goossens (editor) and the various contributors (see next page).

The copyright of the contributions extracted from documentation of the various packages (see below
for details) remains with their respective authors. The current maintainer of this document is Michel
Goossens.

Work history

e January 2008 Initial version (from LGC2 supplementary material).

o Spring 2008 Adapted material from Jonathan Kew’s X§IEX manual and Will Robertson’s fontspec
manual.

e January 2009 Adapted material from Francois Charette’s arabxetex manual and Dian Yin’s
zhspacing manual.

o July 2009 Added material contributed by Vafa Khalighi describing his bidi package.

o August 2009 Added material about xecjk plus introduced corrections and clarifications suggested
by Leo Ferres and Karel Piska.

o January 2010 Added lots of corrections and a few suggestions for clarifications by Taylor Venable.

Contents

List of Figures vii
List of Tables ix
Preface xi
PostScript fonts and beyond 1
1.1 Fontformats:abriefhistory. 2
1.1.1 Adobe and its PostScript Type 1o 2
1.1.2 TrueTypefonts e e e 3
1.13 Twocompeting technologies. 3
1.1.4 The best of twoworlds: OpenType 3
1.2 PostScript Type 1 and TrueType: two differentapproaches 4
1.2.1 Interoperability Lo Lo 4
1.3 Unicode: the universal characterencoding. 5
T4 OPeNTYPE . . ot e e 5
1.4.1 OpenTypetables 6
14.2 OpenTypefeatures 11
143 OpenTypesupporttodayo 12
1.4.4 Interrogating OpenTypefonts 13
XJTEX: TEX meets OpenType and Unicode 19
2.1 X§IgX: a historical introduction and some basics oL oL oL 21
2.1.1 Abriefhistory. L 22
212 XgEX:basicprinciples L0 0oL 22
2.2 XJIEX: typesetting with glyphs, charactersandfonts 23
2.2.1 Accessing font with fontconfigo 23
222 Specifying charactercodes.o 25
223 Hyphenation L 26
224 Font management:thebasics o000 27

225 Fontmappingsusing TECKit 28

CONTENTS

2.2.6 Line breaks and justification
227 Unicode Character/glyphmodel
2.2.8 Using OpenTypevialCU Layout.
229 XJEX's hyphenationsupporto L Lo
2210 Runningxetexl e e e e e e e e
2.3 Supplementary commands introduced by XJIgX.
2.3.1 Specifying languagesand scripts oL Lo
23.2 Specifying optional featureso
233 Support for pseudo-features Lo
234 Commands extracting information from OpenTypefonts
235 Mathsfonts. L
236 Encodings, linebreaking,etc..o oL
237 Graphics and pdfTgX-related commands. L.
24 fONESPEC . . e
241 Usage L e e e e e e e
242 Latin Moderndefaultso
243 Maths‘fiddling’ e
244 Afirstoverview oL Lo L
245 Fontselection oL
24.6 Defaultfontfamilies.o
25 XgipXandotherengines L

Handling all those scripts

3.1 Writing systems . . . o o o e
3.1 Basicterminology. Lo
3.1.2 History of writingsystems
313 Typesof writingsystems. L.
3.14 LanguageResources e e e e e
3.15 Freely available Unicode encodedfonts
3.1.6 Directionality
3.1.7 Writing systemsoncomputers oL oL oL oL 0o

3.2 Bidirectional typesetting.
3.2.1 UsingThebidiPackage
322 Basic Direction Switchingo oo
3.23 Typesetting Short RTLand LTRtexts.
324 Multicolumn Typesettingo
3.25 More peculiarities for RTL typesetting.
326 Tabular materialinRTLmode.

3.3 Languages using the Arabicalphabet.
3.3.1 ArabTeX: Arabic typography with TeX o oL
33.2 ArabXjlgX: Arabic typography with XgIgX.o o oL
333 Arabic presentationforms Lo Lo

34 Typesetting Chinese e
3.4.1 ThexeCJKPackage v i e e
34.2 Thezhspacingpackageo 0oL

3.5 ExamplesoftheuseofUnicode
3.5.1 Unicodefontsandeditors L.
35.2 Examples of Unicodetexts.o

ch-front.tex,v: 2.02

2010/01/10

Contents

4 Unicode mathematics

4.1 Unicode for handling math across platforms and applications

4.2 XjigX handling mathematics fonts

Index of Commands and Concepts

People

ch-front.tex,v: 2.02

2010/01/10

91
91
92

95

100

1.1
1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2

List of Figures

Using OpenType’s advanced typographic features in Adobe InDesign.

Opentype Unicode support in OpenOffice
Microsoft’s Fonts Extension.

Complexities when dealing with various languages

Scripts used in various parts of the world
Asianscripts. L o L

List of features for the scripts and languages supported by the Microsoft Arial and

Adobe Minionfonts

Writing systems used in the world today .
Examples of six Arabic calligraphic styles

13
14
15

19
20
20

40

51
62

2.1

3.1
3.2
3.3

Mathematics symbol types. . .

List of Tables

Indic consonant-vowel combinations in various Indic abugidas.
ArabTgX’s input conventions for Arabic and Persian

All arabxetex input conventions

39

54
63
75

Preface

This free booklet describes XgIEX and its Xg¥TEX variant. After an introduction to the OpenType and
Unicode technologies, it describes how X{TEX extends the TEX engine to optimally use OpenType fonts
directly and allow you to handle Unicode-encoded sources.

Various BIgX packages have been developed recently to take advantage of X§IEX’s new function-
alities, and those are described next.

This compilation of tools has been written in close collaboration with the authors: Jonathan Kew
(XHIEX development), Will Robertson fontspec and unicode-math), Frangois Charette (arabxetex), and
Dian Yin (zhspacing). Corrections and feedback has also been received from Adam Buchbinder, Leo
Ferres, Rik Kabel, and Karel Piska.

’ Comments are welcome and can be addressed to michel.goossens@cern.ch. ‘

Michel Goossens
January 2010

CHAPTER 1

PostScript fonts and beyond

1.1 Fontformats:abrief history. 2
1.2 PostScript Type 1 and TrueType: two differentapproaches 4
1.3 Unicode: the universal characterencoding. i e 5
1.4 OPEeNTYPE . o o ot e e e e 5

In this chapter we look at the most basic type of graphical object in documents: the characters that
form the words. Character shapes (“glyphs”) are not a direct part of the TgX system; all TgX wants to
know about them is some metric information, such as their width or height. It is the task of the post-
processing stage (the backend of pdfTgX or a device driver, such as dvips which reads the . dvi file as
output by TgX) to produce the actual graphical representation of the page. For this stage information
about the actual shapes of the characters is needed and this information is stored in so-called fonts
(collections of characters) for which many different storage formats exist. Thus in principle any exist-
ing font can be used with TEX provided that the metric information TEX needs is available or can be
generated and that a procedure exists that understands the format in which the fonts are stored and
can insert it into the output file.

Donald Knuth developed a companion program to TgX, MetaFont, for generating fonts to be used
with TgX (Chapter 3 of The LaTeX Graphics Companion looked briefly at MetaFont’s drawing capabil-
ities). For quite some time only fonts designed with MetaFont were available to TEX users, with the
result that TeX or BTEX documents had an easily identified look and feel—mainly a result of the use of
the Computer Modern fonts. Given that the TEX community is very small compared to that of other
typesetting systems very few font designers have produced fonts in MetaFont. Therefore, access for
TEX engines to the literally thousands of fonts available commercially in other formats, in particular
PostScript, TrueType, and, more recently, OpenType, has become a must.

Although at the beginning it was quite difficult to integrate PostScript fonts into BIEX packages,
the release of BIEX 2¢ and its new font selection scheme (NESS, see Chapter 7 of [5]) made accessing
the large set of PostScript fonts more straightforward. Nowadays, documents routinely combine TgX’s
superior typesetting quality with all the professionally designed typefaces produced, mainly in Post-
Script, but also in TrueType and OpenType. The current chapter will introduce you to solutions to
achieve this in a convenient way.

After a historic overview of modern font technologies, including a brief description of their re-
spective technical capabilities, we take a closer look at the basic issues concerned with typesetting and
how TgX and PostScript, working together, address this problem (how metric information is handled,
the different types of TgX and PostScript fonts, how they are encoded, i.e., how one can access individ-

POSTSCRIPT FONTS AND BEYOND

ual characters of a font,etc.) We then explain how you can use the “basic” PostScript fonts, as they are
defined in the PSNFSS system (a collection of small packages and accompanying files for BIgX), which
makes it easy to use a large number of common PostScript fonts out of the box) and how to easily down-
load and install a few instances of freely available fonts. We extend the discussion to where to download
and install the BTgX support files for commercially available fonts that you might have bought. Since
many BTEX users have de facto access to a lot of TrueType fonts that come with their operating system,
we devote the next section to the use of TrueType fonts with pdflatex, in particular how one can use
a large Unicode TrueType font for typesetting in many different scripts and languages. We are then
ready to discuss a few recent ETEX packages which take advantage of the enriched possibilities of the
OpenType technology. We end the chapter with a discussion of Fontname, also know as the “Berry”
font naming scheme, which is important to uniquely identify and handle all BTEX support files of the
large number of fonts that are available on current operating system.

1.1 Font formats: a brief history

The current main font formats are PostScript Type 1 (Type 1), TrueType (TT), and OpenType (OT), an
integrated superset of the first two. All three are based on font outline technologies, are multi-platform,
and have their technical specifications openly available. These formats can be run on any recent com-
puter platform and their character outlines (“glyphs”) are described mathematically as functions op-
erating on points, lines and curves. The character representations are resolution independent and can
be scaled to any size. These technologies implement “hinting” by associating additional information
with each character to help the rasterization engine optimize their representation on any given output
device.

1.1.1 Adobe and its PostScript Type 1

When Adobe launched PostScript in 1984, it supported two different types of fonts formats: Type 1,
the more sophisticated one with support for hinting and data compression, and Type 3, a more general
(almost all PostScript graphics operators are allowed) but less optimized variant. At first Adobe did not
publish the specification of its PostScript Type 1 format (the Type 3 spec was public), which helped
Adobe take a large part of the commercial typography market but upset the other font foundries.

Apple, which also was founded in the early nineteen eighties, adopted PostScript as page descrip-
tion language for its Apple LaserWriter printer in 1985. Soon also other high-end image setting ma-
chines adopted PostScript as their native language. At about the same time the introduction of af-
fordable desktop publishing software, such as Pagemaker, Freehand, set off a revolution in page layout
technology, and PostScript backends appeared for most graphics programs, thus adding to the poten-
tial market for professional PostScript Type 1 fonts. Because of its reliability, its wide selection of fonts
available, its clever rasterizing engine and superior hinting mechanism, historically PostScript has been
the preferred font format of professional designers, publishers and printshops.

Concurrently Adobe had developed an “interactive” version of PostScript, called Display PostScript,
that ran (somewhat slowly) on personal computers to allow displaying PostScript data on-screen. Al-
though some computer manufacturers agreed to take out (and pay) software licences, Apple and Mi-
crosoft were quite unwilling to pay the royalties requested by Adobe and, moreover, to hand control to
Adobe over a vital part of their operating system.

In the first part of the 1990s Adobe also developed the PostScript Type 1 multiple master (MM)
format as an extension of PostScript Type 1. Essentially, it allows two (or more) design variations to be
encoded on a given design axis (such as weight, width, optical size). Afterwards, any in-between state

'See http://partners.adobe. com/public/developer/en/font/T1_SPEC.PDF.

xetex-opentype.tex,v: 2.01 2009/06/15

1.1 Font formats: a brief history

(instance) may be generated by the user as required.

1.1.2 TrueType fonts

The major system software vendors (Apple, Microsoft, IBM) had been thinking about scalable font
technology support at the level of their respective operating systems since they realized that it would
guarantee much better screen display, compared to pre-generated bitmaps which only look good at their
design sizes, and unacceptably jagged at all others. For instance in the late 1980s Apple had developed an
in-house scalable font technology, Royal, later renamed to TrueType.? The TrueType specification was
public and already in 1991 native TrueType support appeared in Apple’s Mac System 7 and Microsoft’s
Windows 3.1.

TrueType fonts use a different outline model from PostScript, and also the approach to hinting
is different. The font instances contain both screen and printer font data in a single component. This
makes the fonts easy to install. Although TrueType fonts support Unicode and can theoretically contain
over 65.000 characters, they rarely feature more that some 220 characters. Moreover, TrueType font
formats are platform-dependent.

1.1.3 Two competing technologies

Adobe reacted to the advent of TrueType by publishing in 1990 the PostScript Type 1 font format
specification [1]. A few years later, it introduced the Adobe Type Manager (ATM) software, which scales
PostScript Type 1 fonts for screen display, and supports imaging on non-PostScript printers.

Thus by the end of the 1990s there were two widely-used outline font specifications, TrueType,
built into the operating systems used by most desktop computers, and PostScript Type 1, the de facto
standard for the graphic arts and the publishing industry. Moreover, as time went by, the practical
differences had begun to blur. On the one hand, support for TrueType became standard in PostScript
3, while on the other hand, besides native TrueType support, PostScript Type 1 rasterizing technology
was incorporated into Windows 2000, Windows XP, and Mac OS X.

1.1.4 The best of two worlds: OpenType

The OpenType® font format was jointly developed by Adobe and Microsoft to combine the best features
of the TrueType and PostScript Type 1 technologies. It was first presented in 1996 and its use and
support has been steadily increasing since about 2000.

OpenType fonts contain both the screen and printer font data in a single component. The Open-
Type format can contain either TrueType or PostScript font data. It supports expanded character sets
(up to 65.000) and special typographic features. These may include various versions of figures (tabular,
old-style, lining), small caps, ligatures, ordinals, and other extras. While OpenType allows type design-
ers to build complex fonts, not many fonts take advantage of these possibilities. Most OpenType fonts
available today are simply converted PostScript fonts, limited to 220 characters in a set.

OpenType fonts are platform independent and can thus be used on all operating systems.

The technology never really took off and since 2000 Adobe has abandoned developing multiple master fonts since most
applications cannot handle them and for a large majority of users it often makes more economic sense to buy a fontset as mul-
tiple separate fonts. Adobe now concentrates on releasing OpenType fonts to replace their multiple master equivalents (e.g., the
Minion and Myriad typefaces).

2See e.g,http://developer.apple.com/fonts/,and http://www.microsoft.com/typography.

*See Adobe’s Web pages http://store.adobe.com/type/opentype/main.html,
and http://blogs.adobe.com/typblography/TT$20PS%200penType .pdf,
or Microsofts's Web page http://www.microsoft.com/typography/OTSPEC/default.htm.

xetex-opentype.tex,v: 2.01 2009/06/15

POSTSCRIPT FONTS AND BEYOND

1.2 PostScript Type 1 and TrueType: two different approaches

TrueType and PostScript Type 1 fonts use different mathematical representations to describe the curves
defining the font outlines." OpenType, being a superset, can have either kind of outlines.

TrueType describes its curves by quadratic B-splines, while PostScript Type 1 uses cubic Bézier
curves. This means, in practice, that the shapes of real-world fonts tend to take more points in True-
Type, even though the kind of mathematics used to describe the curves is simpler. Any quadratic spline
can be converted to a cubic spline with essentially no loss. A cubic spline can be converted to a quadratic
with arbitrary precision, but there will be a slight loss of accuracy in most cases. Thus it is easy to convert
TrueType outlines to PostScript Type 1 outlines (the “Type 42” PostScript font format is a PostScript
wrapper around a TrueType font for use in PostScript interpreters), harder to do the reverse.

The approach to hinting is different in both technologies. PostScript Type 1> takes a declarative
approach and lets a smart PostScript interpreter do the work. It tells the rasterizer what features ought
to be controlled, and the rasterizer interprets these using its own “intelligence” to decide how to do it.
Therefore, when the PostScript interpreter is upgraded, the rasterization can be improved.

On paper, the hinting potential of TrueType® should be superior to that of PostScript Type 1 fonts,
since TrueType hints can do all that PostScript Type 1 can, and more. Indeed TrueType takes an al-
gorithmic or programming approach and uses the very flexible and complete instructions set of the
TrueType language. Thus TrueType puts all the hinting information into the font to control exactly
how it will appear when rasterized. TrueType interpreters can be quite “dumb” and limit themselves to
simply execute what they have been “instructed” to do. Thus, although a TrueType font developer can
finetune what happens when a font is rasterized under different conditions, it requires serious effort,
expertise, and high-end tools to actually take advantage of this greater hinting potential. As a result,
high-quality TrueType fonts, which exploit the true potentials of TrueType hinting are quite rare. More-
over, when using complex hinting the introduction of a new rasterizer might require major changes to
the TrueType code in order to be able to optimally display existing fonts.

PostScript Type 1 needs two separate files for its font data: one for the character outlines (.p£b),
and the other for the metrics data (.afm on Linux, .pfm on Windows), containing character widths,
kerning pairs, and a description of how to construct composites. TrueType fonts have all the data in
a single file. Nevertheless this single TrueType font file is often twice larger than the two PostScript
Type 1 files combined due to the presence in the TrueType fonts of extensive “hinting” instructions.

Generally speaking, PostScript Type 1 fonts have some advantages simply from being the longer-
established standard, especially for serious graphic arts work. Service bureaus are standardized on, and
have large investments in, PostScript Type 1 fonts. Most of the fonts which have “expert sets” of old
style figures, extra ligatures, true small capitals and the like are in that format.

1.2.1 Interoperability

In principle one can mix TrueType and PostScript Type 1 fonts with the caveat that the TrueType and
PostScript Type 1 instances of the fonts may not have exactly the same names on the given operating
system. Indeed, the fact that fonts exist with identical menu names or PostScript Type 1 font names
confuses the operating system or the application programs, with often unpredictable results.

Also, if using Windows, one may find that metrically-similar PostScript Type 1 fonts get substituted
for the Windows TrueType system fonts at output time: Times New Roman becomes Times Roman, and
Arial becomes Helvetica. Although the basic spacing of the substituted fonts is identical, their kerning
pairs are not. This can cause text to reflow (i.e., line endings in a paragraph may differ) if one switches
between two “almost identical” fonts if your typesetting program (e.g., TgX) supports kerning pairs.

!See http://www.truetype.demon.co.uk/articles/ttvstl.htm.

*See Dadid Lemon’s Basic Type 1 hinting (nttp://www.pyrus.com/downloads/hinting.pdf).

*See the URL http://www.microsoft.com/typography/hinting/tutorial.htm, Vincent Connare’s Basic hinting
philosophies and TrueType instructions.

xetex-opentype.tex,v: 2.01 2009/06/15

1.3 Unicode: the universal character encoding

Thus care must be taken to ensure that you use the correct font all through the complete production
chain.

1.3 Unicode: the universal character encoding

Unicode is an international standard' for representing characters using a multi-byte platform-
independent encoding for covering all the world languages (including some “artificial” ones, such as
mathematical symbols and the international phonetic alphabet). Unicode deals with characters rather
than glyphs. That is, it only deals with semantic rather than typographic distinctions (with a few ex-
ceptions for compatibility with existing standards). Therefore there is no place for glyph variants, such
as unusual ligatures, old style numbers, or small caps within Unicode itself; the Unicode standard as-
sumes that such distinctions will be made elsewhere. Therefore, font formats, which supports such
distinctions, such as OpenType (see Section 1.4), need to be layered on top of Unicode. Alan Wood’s
maintains a useful website (http://www.alanwood.net/unicode/) which describes numerous
resources for Unicode and multilingual support in HTML, fonts, web browsers and other applications.

Most current operating systems (Linux, Mac OS X and Windows XP) have direct support for Uni-
code at the basic system level. For instance, apart from switching between different language keyboards,
these operating systems offer means of directly accessing any Unicode character in any font (e.g., on
Mac OS X via the Character Palette and on Microsoft Windows XP or Vista via the Character Map utility
in System Tools in the Accessories submenu.)

1.4 OpenType

The OpenType font format was developed jointly by Microsoft and Adobe as an extension of the True-
Type font format. OpenType addresses the following goals:

e supports PostScript Type 1 outlines and hints;

e supports TrueType tables and hints;

e supports advanced typographic features by way of new tables for glyph positioning and substitu-
tion;

e supports multiple platforms;

e supports international character sets by using Unicode;

e offers better protection for font data;

e features smaller file sizes to make font distribution more efficient.

Sometimes OpenType fonts are referred to as TrueType Open v.2.0 fonts. PostScript Type 1 data
included in OpenType fonts may be directly rasterized or converted to the TrueType outline format
for rendering, depending on which rasterizers have been installed in the host operating system. Users
do not need to know which outlines are actually present. One can say that OpenType enters TrueType
and PostScript Type 1 in a common wrapper. OpenType tables include the current TrueType tables
plus some additional tables for advanced typographic features. The representation of PostScript Type 1
font software in an OpenType font uses Adobe’s Compact Font Format (CFF) with Type 2 charstrings,
which is a more compact representation of the same information in PostScript Type 1 (a gain of about
a factor of two, on average, when no glyphs and features are added).

"The current version is 5.0 [7] and it has been defined by the members of the Unicode Consortium, which includes major
computer corporations, software producers, database vendors, research institutions, international agencies, various user groups,
and interested individuals, see http: //www.unicode.org.

xetex-opentype.tex,v: 2.01 2009/06/15

POSTSCRIPT FONTS AND BEYOND

The OpenType format supports features equivalent to most of the advanced features of existing
TrueType and PostScript formats, such as Adobe’s CID technology for Asian fonts, and extended mul-
tilingual character sets. However, multiple master fonts are not part of the OpenType specification.
OpenType fonts may contain more than 65,000 glyphs, which allows a single font file to contain many
nonstandard glyphs, such as old-style figures, true small capitals, fractions, swashes, superiors, inferi-
ors, titling letters, contextual and stylistic alternates, and a full range of ligatures. OpenType fonts thus
offers rich linguistic support combined with advanced typographic control. Feature-rich Adobe Open-
Type fonts are often distinguished by the word “Pro,” being part of the font name. OpenType fonts can
be installed and used alongside PostScript Type 1 and TrueType fonts.

OpenType, which is based on Unicode, significantly simplifies font management and the pub-
lishing process by ensuring that all of the required glyphs for a document are contained in one cross-
platform font file throughout the workflow.

The text model of OpenType is that applications store text using the underlying Unicode charac-
ters, and apply formatting to get at the specific desired glyphs. In addition to the Unicode mapping of
default glyphs, the font has OpenType layout tables which tell it which glyphs to use when other forms
are desired instead, such as small caps or swashes. These tables also specify which glyphs should turn
into ligatures, or when a script font needs different glyphs for a letter when it is at the beginning, middle
or end of a word, or is a word by itself.

Having the transformations distinct from the underlying text enables table-driven automatic glyph
substitution, which does not need to be one for one; one glyph can be substituted for several (such as
the “fii” ligature, which remembers that the underlying text contains the characters “f-f-i” in searching),
or multiple glyphs can be substituted for a single one. Glyph substitution can be context sensitive, or
it can be activated by explicit user demand. This feature might not appear essential for Latin-based
languages, such as Spanish and English, but it becomes mandatory for proper typesetting of languages
that use “complex scripts’, such as Arabic or the Indic languages, since having letters take different
forms based on their position in the word is a basic part of how Arabic works.

OpenType layout features can be used to position or substitute glyphs. For any character, there is
a default glyph and positioning behavior. The application of layout features to one or more characters
may change the positioning, or substitute a different glyph.

There are several advantages of using a large OpenType font over currently available “expert sets”
and “alternates”. First, one only has to deal with one font file, rather than being cluttered with a whole
set of supplemental fonts. Second,there can be kerning between glyphs that might otherwise have been
in separate fonts. Finally, the user can turn on ligatures, smallcaps, or old-style figures, much like bold
or italic styling, without switching fonts.

Historically, some of the highest quality typefaces have included different designs for different print
sizes. Rather than using its multiple masters technology, most of Adobe’s OpenType fonts now include
four optical size variations: caption, regular, subhead and display. Called “Opticals,” these variations
have been optimised for use at specific point sizes. Although the exact intended sizes vary by family,
the general size ranges include: caption (6-8 point), regular (9-13 point), subhead (14-24 point) and
display (25-72 point).

1.4.1 OpenType tables

OpenType font files contain tables that contain either TrueType or PostScript outline font data and
the data in these tables are used by rendering programs to render the TrueType or PostScript glyphs.
Moreover, some of the data is independent of the particular outline format used.'

OpenType fonts first contain a number of required tables.

"The structure of an OpenType font file is described at the URL http://www.microsoft.com/typography/otspec/
otff.htm; a short description of the contents of the tables is at the URL http://www.microsoft.com/typography/
otspec/recom.htm.

xetex-opentype.tex,v: 2.01 2009/06/15

14 OpenType

cmap Character to glyph mapping maxp Maximum profile

head Font header name Naming table

hhea Horizontal header 0s/2 0S/2 and Windows specific metrics
hmtx Horizontal metrics post PostScript information

For OpenType fonts based on TrueType outlines, the following tables are used:

cvt Control Value Table glyf Glyph data prep CVT Program
fpgm Font program loca Index to location

For OpenType fonts based on PostScript another set of tables containing data specific to PostScript
fonts are used instead of the tables listed above:

CFF PostScript font program (compact font format)
VORG Vertical Origin

OpenType fonts may contain bitmaps of glyphs, in addition to outlines. Hand-tuned bitmaps are
especially useful in OpenType fonts for representing complex glyphs at very small sizes. If a bitmap for
a particular size is provided in a font, it will be used by the system instead of the outline when rendering
the glyph. For OpenType fonts containing bitmap glyphs three tables are available:

EBDT Embedded bitmap data
EBLC Embedded bitmap location data
EBSC Embedded bitmap scaling data

Finally, advanced typography, vertical typesetting and other special functions are supported with
the following tables:

BASE Baseline data hdmx Horizontal device metrics
GDEF Glyph definition data kern Kerning

GPOs Glyph positioning data LTSH Linear threshold data
GSUB Glyph substitution data PCLT PCL5 data

JSTF Justification data VDMX Vertical device metrics
DSIG Digital signature vhea Vertical Metrics header
gasp Grid-fitting/Scan-conversion vmtx Vertical Metrics

Furthermore, OpenType fonts use a set of script, language and feature tags to structure the infor-
mation in their tables.

Script tags identify the scripts represented in an OpenType font. Each script corresponds to a con-
tiguous character code range in Unicode. Script tags are four-byte character strings composed of up to
four letters in the ASCII characters range 0x20-0x7E, padding with blanks (0x20) if required. A list
of scripts and their tags follows.'

dflt Default cans Canadian Syllabics gujr Gujarati

arab Arabic cher Cherokee guru Gurmukhi

armn Armenian cyrl Cryrillic jamo Hangul Jamo
beng Bengali deva Devanagari hang Hangul

bopo Bopomofo ethi Ethiopic hani CJK Ideographic
brai Braille geor Georgian hebr Hebrew

byzm Byzantine Music grek Greek kana Hiragana

'See http://www.microsoft.com/typography/otspec/scripttags.htm for an up-to-date list.

xetex-opentype.tex,v: 2.01 2009/06/15

POSTSCRIPT FONTS AND BEYOND

knda Kannada mymr Myanmar telu Telugu
kana Katakana ogam Ogham thaa Thaana
khmr Khmer orya Oriya thai Thai
lao Lao runr Runic tibt Tibetan
latn Latin sinh Sinhala : .

yi Yi
mlym Malayalam syrc Syriac
mong Mongolian taml Tamil

When the table with the list of scripts is searched for a script, and no entry is found, and there
exists an entry for the DFLT script, then this entry must be used. Furthermore, the default script can
only contain a single, default, language.

Language system tags identify the language systems supported in an OpenType font. What is meant
by a “language system” in this context is a set of typographic conventions for how text in a given script
should be presented. Such conventions may be associated with particular languages, with particular
genres of usage, with different publications, and other such factors. For example, particular glyph vari-
ants for certain characters may be required for particular languages, or for phonetic transcription or
mathematical notation.

Note that two or more languages may follow the same conventions or that more than one set of
typographic conventions can apply to a given language. Therefore language system tags do not corre-
spond in a one-to-one manner with languages.’

Language system tags are four-byte character strings composed of up to four characters in the
ASCII characters range 0x20-0x7E, padding with blanks (0x20) if required. A list of languages and
their language system tags follows.

dflt Default BAL Balkar BRM Burmese

ABA Abaza BAU Baule BSH Bashkir

ABK Abkhazian BBR Berber BTI Beti

ADY Adyghe BCH Bench CAT Catalan

AFK Afrikaans BCR Bible Cree CEB Cebuano

AFR Afar BEL Belarussian CHE Chechen

AGW Agaw BEM Bemba CHG Chaha Gurage

ALT Altai BEN Bengali CHH Chattisgarhi

AMH Ambaric BGR Bulgarian CHI Chichewa

APPH Phonetic transcription BHI Bhili CHK Chukchi
(Americanist conventions) BHO Bhojpuri cHP Chipewyan

ARA Arabic BIK Bikol CHR Cherokee

ARI Aari BIL Bilen CcHU Chuvash

ARK Arakanese BKF Blackfoot CMR Comorian

ASM Assamese BLI Balochi cop Coptic

ATH Athapaskan BLN Balante CRE Cree

AVR Avar BLT Balti CRR Carrier

AWA Awadhi BMB Bambara CRT Crimean Tatar

AYM Aymara BML Bamileke csL. Church Slavonic

AZE Azeri BRE Breton csy Czech

BAD Badaga BRH Brahui DAN Danish

BAG Baghelkhandi BRI BrajBhasha DAR Dargwa

'See http://www.microsoft.com/typography/otspec/scripttags.htm for an up-to-date list of language tags
and the correspondece to the ISO 639 codes, which identify individual languages as well as for certain collections of languages.

xetex-opentype.tex,v: 2.01 2009/06/15

14 OpenType

DCR
DEU
DGR
DHV
DJR
DNG
DNK
DUN
DZN
EBI
ECR
EDO
EFI
ELL
ENG
ERZ
ESP
ETI
EUQ
EVK
EVN
EWE
FAN
FAR
FIN
FJI
FLE

FON
FOS
FRA
FRI

Woods Cree
German (Standard)
Dogri
Dhivehi
Djerma
Dangme
Dinka
Dungan
Dzongkha
Ebira
Eastern Cree
Edo

Efik

Greek
English
Erzya
Spanish
Estonian
Basque
Evenki

Even

Ewe

French Antillean
Farsi
Finnish
Fijian
Flemish
Forest Nenets
Fon

Faroese
French (Standard)
Frisian
Friulian
Futa

Fulani

Ga

Gaelic
Gagauz
Galician
Garshuni
Garhwali
Geez

Gilyak
Gumuz
Gondi

Greenlandic

HRI
HRV
HUN
HYE
IBO
IJO
ILO
IND
ING
INU
IPPH

IRI
IRT
ISL
ISM
ITA
IWR
JAN
JAV
JII

Garo KHK
Guarani KHM
Gujarati KHS
Haitian KHV
Halam KEW
Harauti KIK
KIR
Hausa
. KIS
Hawaiin
KKN
Hammer-Banna

i KLM
Hiligaynon KMB
Hindi KMN
High Mari KMO
Hindko KMS
Ho KNR
Harari KOD
Croatian KOK
Hungarian KON
Armenian Kop
IgbO KOR
Tjo KOZ
Tlokano KPL

. KRI
Indonesian
KRK
Ingush
] KRL
Inuktitut
Phonet.lc transcription (IPA KRN
conventions)

. KRT
Iris KSH
Irish Traditional KSI
Icelandic KSM
Inari Sami KUT
Italian KUL
Hebrew KUM
Japanese KUR
Javanese KUU
Yiddish KUY
Judezmo KYK
Jula LAD
Kabardian

. LAK

Kachchi
. LAM

Kalenjin
K d LAO
annada LAT
Karachay 1AZ
Georgian LCR
KaZakh 1DK
Kebena LEZ
Khutsuri Georgian LIN
Khakass LMA

2009/06/15

xetex-opentype.tex,v: 2.01

Khanty-Kazim
Khmer
Khanty-Shurishkar
Khanty-Vakhi
Khowar
Kikuyu
Kirghiz

Kisii

Kokni
Kalmyk
Kamba
Kumaoni
Komo
Komso
Kanuri
Kodagu
Konkani
Kikongo
Komi-Permyak
Korean
Komi-Zyrian
Kpelle

Krio
Karakalpak
Karelian
Karaim
Karen
Koorete
Kashmiri
Khasi

Kildin Sami
Kui

Kulvi
Kumyk
Kurdish
Kurukh

Kuy

Koryak
Ladin

Lahuli

Lak
Lambani
Lao

Latin

Laz

L-Cree
Ladakhi
Lezgi
Lingala

Low Mari

POSTSCRIPT FONTS AND BEYOND

LSB
LsSM
LTH
LUB
LUG
LUH
LUO
LVI
MAJ

MOK
MOL
MON
MOR

NAS
NCR
NDB

Limbu
Lomwe
Lower Sorbian
Lule Sami
Lithuanian
Luba
Luganda
Luhya

Luo

Latvian
Majang
Makua
Malayalam Traditional
Mansi
Marathi
Marwari
Mbundu
Manchu
Moose Cree
Mende
Meen

Mizo
Macedonian
Male
Malagasy
Malinke
Malayalam Reformed
Malay
Mandinka
Mongolian
Manipuri
Maninka
Manx Gaelic
Moksha
Moldavian
Mon
Moroccan
Maori
Maithili
Maltese
Mundari
Naga-Assamese
Nanai
Naskapi
N-Cree
Ndebele

ORI
ORO
oss

SAT
SAY
SEK

Ndonga
Nepali

Newari
Norway House Cree
Nisi

Niuean

Nkole

Dutch

Nogai
Norwegian
Northern Sami
Northern Tai
Esperanto
Nynorsk
Oji-Cree
Ojibway

Oriya

Oromo
Ossetian
Palestinian Aramaic
Pali

Punjabi

Palpa

Pashto
Polytonic Greek
Pilipino
Palaung

Polish
Provencal
Portuguese
Chin
Rajasthani
Russian Buriat
R-Cree

Riang
Rhaeto-Romanic
Romanian
Romany
Rusyn

Ruanda
Russian

Sadri

Sanskrit
Santali

Sayisi

Sekota

xetex-opentype.tex,v: 2.01

SEL
SGO
SHN
SIB
SID
SIG
SKS
SKY
SLA
SLV
SML
SMO
SNA
SND
SNH
SNK
SOG
SOT
SQI
SRB
SRK
SRR
SSL
SSM
SUR
SVA
SVE
SWA
SWK
SWZ
SXT
SYR
TAB
TAJ
TAM
TAT
TCR
TEL
TGN
TGR
TGY
THA
THT
TIB
TKM
TMN

2009/06/15

Selkup
Sango

Shan

Sibe
Sidamo
Silte Gurage
Skolt Sami
Slovak
Slavey
Slovenian
Somali
Samoan
Sena

Sindhi
Sinhalese
Soninke
Sodo Gurage
Sotho
Albanian
Serbian
Saraiki
Serer

South Slavey
Southern Sami
Suri

Svan
Swedish
Swadaya Aramaic
Swahili
Swazi

Sutu

Syriac
Tabasaran
Tajiki

Tamil

Tatar
TH-Cree
Telugu
Tongan
Tigre
Tigrinya
Thai
Tahitian
Tibetan
Turkmen

Temne

14 OpenType

TNA Tswana URD Urdu YAK Yakut

TNE Tundra Nenets UsB Upper Sorbian YBA Yoruba

TNG Tonga uYG Uyghur YCR Y-Cree

TOD Todo UzB Uzbek YIC YiClassic

TRK Turkish VEN Venda YIM YiModern

TSG Tsonga VIT Vietnamese zHP Chinese Phonetic
TUA Turoyo Aramaic WAG Wagdi ZHS Chinese Simplified
TUL Tulu WA Wa ZHT Chinese Traditional
TUV Tuvin WCR West-Cree ZND Zande

TWI Twi WEL Welsh 20L Zulu

ubM Udmurt WLF Wolof

UKR Ukrainian xHS Xhosa

1.4.2 OpenType features

Features provide information about how to use the glyphs in an OpenType or TrueType font to render a
script or language. For example, an Arabic font might have a feature for substituting initial glyph forms,
and a Kanji font might have a feature for positioning glyphs vertically. All OpenType Layout features
define data for glyph substitution, glyph positioning, or both.

Each OpenType Layout feature has a feature tag that identifies its typographic function and effects.
By examining a feature’s tag, a text-processing client can determine what a feature does and decide
whether to implement it. All tags are four-byte character strings composed of a limited set of ASCII
characters (range 0x20-0x7E).

A feature definition does not necessarily provide all the information required to properly imple-
ment glyph substitution or positioning actions. Often, a text-processing client may need to supply ad-
ditional data’ In all cases, the text-processing client is responsible for applying, combining, and arbi-
trating among features and rendering the result.

The list of features registered by Microsoft together with a short description follows.?

aalt Access All Alternates clig Contextual Ligatures £fin2 Terminal Forms #2
abvf Above-base Forms cpsp Capital Spacing £in3 Terminal Forms #3
abvm Above-base Mark Position- ogwh Contextual Swash fina Terminal Forms

ing o curs Cursive Positioning frac Fractions
:Z;s: 23::;;?:5:;;&?:;:10“ c2sc Small Capitals From Capi- £wid Full Widths

tals half Half Forms

:]::Ifl gi(ll(l)i?—iise Forms c2pc Petite Capitals From Capi- haln Halant Forms
blwm Below-base Mark Position- tals halt Alternate Half Widths

ing dist Distances hist Historical Forms
blws Below-base Substitutions dlig Discretionary Ligatures hkna Horizontal Kana Alternates
calt Contextual Alternates dnom Denominators hlig Historical Ligatures
case Case-Sensitive Forms expt Expert Forms hngl Hangul
cemp Glyph Composition and f£alt Final Glyph on Line Alter- hojo Hojo Kanji Forms (JIS X

Decomposition nates 0212-1990 Kanji Forms)

'As an example let us consider the init feature whose function is to provide initial glyph forms. Nothing in the feature’s
lookup tables indicates when or where to apply this feature during text processing. Hence, to correctly use this feature in Arabic
text where initial glyph forms appear at the beginning of words, text-processing clients must be able to identify the first glyph
position in each word before making the glyph substitution.

*More details about each feature are available at the Microsoft OpenType site http://www.microsoft.com/
or Adobe developers site

typography/otspec/featuretags.htm, http://partners.adobe.com/public/

developer/opentype/index_tag3.html

1"

xetex-opentype.tex,v: 2.01 2009/06/15

POSTSCRIPT FONTS AND BEYOND

hwid Half Widths palt Proportional Alternate ss12 Stylistic Set 12
init Initial Forms Widths ss13 Stylistic Set 13
isol Isolated Forms pcap Petite Capitals ssl4 Stylistic Set 14
ital Italics pnum Proportional Figures ss15 Stylistic Set 15
jalt Justification Alternates pref Pre-Base Forms ss16 Stylistic Set 16
jp78 JIS78 Forms pres Pre-base Substitutions ss17 Stylistic Set 17
jp83 JIS83 Forms pstf Post-base Forms ss18 Stylistic Set 18
5990 JIS90 Forms psts Post-base Substitutions ss19 Stylistic Set 19

5p04 JIS2004 Forms pwid Proportional Widths 820 Stylistic Set 20

X Kerni qwid Quarter Widths
ern Kerning .

1fbd Left Bounds rand Randomize sups Superscript

rlig Required Ligatures swsh Swash

rphf Reph Forms £itl

rtbd Right Bounds

rtla Right-to-left alternates

subs Subscript

liga Standard Ligatures
1jmo Leading Jamo Forms Titling
. . tjmo Trailing Jamo Forms
1num Lining Figures

tnam Traditional Name Forms

locl Localized Forms .
ruby Ruby Notation Forms tnum Tabular Figures

mark Mark Positioning salt Stylistic Alternates trad Traditional Forms
med2 Medial Forms #2 sinf Scientific Inferiors twid Third Widths
medi Medial Forms size Optical size : .
] unic Unicase
mgrk Mathematical Greek smcp Small Capitals valt Alternate Vertical Metrics

mkmk Mark to Mark Positioni i i
ark to Mark Positioning - smp1 Simplified Forms vatu Vattu Variants

mset Mark Positioning via Sub- ss01 Stylistic Set 1 vert Vertical Writing

stitution . ss02 Stylistic Set 2 vhal Alternate Vertical Half
nalt Alternate Annotation gg03 Stylistic Set 3 Metrics
Forms

ss04 Stylistic Set 4 vimo Vowel Jamo Forms

nlck NLCKanji Forms ss05 Stylistic Set 5 vkna Vertical Kana Alternates
nukt Nukta Forms ss06 Stylistic Set 6 vkrn Vertical Kerning

numr - Numerators ss07 Stylistic Set 7 vpal Proportional Alternate
onum Oldstyle Figures ss08 Stylistic Set 8 Vertical Metrics

opbd Optical Bounds ss09 Stylistic Set 9 vrt2 Vertical Alternates and Ro-
ordn Ordinals ss10 Stylistic Set 10 tation

ornm Ornaments ss11 Stylistic Set 11 zero Slashed Zero

1.4.3 OpenType support today

As an example of how publishing applications can exploit OpenType’s layout features we can look at
OpenType support in Adobes lllustrator, InDesign and Photoshop® programs. These include automatic
substitution by alternate glyphs in an OpenType Pro font (ligatures, small capitals, and proportional
old-style figures, vertical shift of punctuation in an all-caps setting). Moreover, any alternate glyphs
in OpenType fonts may be selected manually via the Insert Character palette (see Figure 1.1 on the
facing page). These OpenType Pro fonts offer a full range of accented characters to support all central
and eastern European languages, and many of them also contain support for the Cyrillic and Greek
alphabets.

Feature support across Microsoft’s Office applications exists for those features that are necessary
for language support, such as contextual substitutions for Arabic—and only in the languages which
require them (e.g., Word 2003 does contextual substitutions for Arabic, but not for English).

'See http://www.adobe.com/products/XXX/main.htm, where XXx stands for i1lustrator, indesign, and pho-
toshop, respectively.

xetex-opentype.tex,v: 2.01 2009/06/15

14 OpenType

] = InsertCharacter————
Hide Options
IWarnock Fro |v||ReguIar |v| All Caps Q R S T U ll&ﬂ

— — Small Caps -
et [+] f}‘ Blzopt [+] i WX Y2z [
i Emetrics [«] a4 20 [+]| Subscript

=Tioo% T Fioos Underline A ¢ -
I?I?’ | '_‘I?I | Strikethrough] - a a
& o | e I|. Ligatures = .kP T a

‘arnoc O hd egular
(Engish:usa %] < (A5 5
No Break A 31 '3

Figure 1.1: Using OpenType’s advanced typographic features in Adobe InDesign. Left: selection of au-
tomatic substitution of ligatures and old-style figures on a menu. Right: select and insert any alternate
glyph Insert Character palette.

Openoffice on all supported platforms has a somewhat similar approach to Microsoft’s Office suite
in that it allows one to use the characters present in the font but does not really present an interface to
the advanced typographic features (see Figure 1.2 on the next page).

That leaves us with the availability of the fonts themselves. Around the year 2000 there were only a
handful of OpenType fonts, and almost all of them were from Adobe. Nowadays, there are thousands
available from over two dozen font foundries. For instance, the entire Adobe Type Library of over 2,200
fonts has been translated into the OpenType format, URW has released over 1,000 OpenType fonts,
and other large foundries, such as Linotype and Agfa Monotype, as well as most smaller foundries, are
also creating OpenType fonts. Most of Microsoft’s system fonts, and Apple’s Japanese system fonts, are
OpenType. Similarly, OpenType is being embraced by major type foundries for non-alphabetic scripts,
such as Chinese and Japanese.

However, it is not enough for a font to be in the OpenType format to be sure that it has extended
language support or extra typographic features. Therefore, before purchasing, you should examine the
features present in a font." To inspect a font that you already have on your Microsoft Windows system,
you can install the Font Properties Extension from Microsoft. This add-on allows you to right-click on
a font to display a much expanded set of properties, which includes language support and OpenType
layout features (see Figure 1.3 on page 15).

1.4.4 Interrogating OpenType fonts

Eddie Kohler’s otfinfo program? prints information about an OpenType font.
> otfinfo --help
'Otfinfo' reports information about an OpenType font to standard output.
Options specify what information to print.

Usage: otfinfo [-sfzpg] [OTFFILES...]

Query options:

-s, --scripts Report font's supported scripts.

-f, --features Report font's GSUB/GPOS features.

-z, —--optical-size Report font's optical size information.
-p, --postscript-name Report font's PostScript name.

-a, --family Report font's family name.

'In the case of Adobe, where currently not all fonts released in OpenType format have significant added features or extended
language support, you browse all fonts in the Adobe Type Library from the URL http://store.adobe.com/type/main.
html, so that you can inspect the font you are interested in. Other font vendors offer similar possibilities.

Part of his 1cdf tools, see www.lcdf.org/type/.

13

xetex-opentype.tex,v: 2.01 2009/06/15

1 POSTSCRIPT FONTS AND BEYOND

& Sans nom1 - OpenOffice.org Writer

Fichier Edition Affichage Insertion Format Tableau OQutis Fepftre Aide X
BE-ecH2 B BESR VE EhB-¢ -0 & =2
J’Q IStandard v.l |Mini0n Pro v| |18 v-| G I S |g| = i

: Un Frangais écrit des ceuvres a I'hétel.
: MockBa bonpmroit ropos-crommia Poccun.)
Know thyself: THO®EIX EAYTOH' %

] 3

Police |Mini0n Pro w | Sous-ensemble v ik
A E|H|T|O|Y|Q|T|A|B|T|A|E|Z|H = Annuler
(T |KA/MIN[E|O|TT|P|EZ2|T|Y|d|X |V IIIIHIIII
|t (¥laje|(n]i|o|alP|ly|8|e]C|n|lB =

ENES RSN RAR: mlelelojt|v|e|x|w
w|i|b|o|o|a|8|8|d|o|g|F|le|2|xn|E
lrlels|tli]|r|mim|Ba|k|[¥]|ulals|s I‘
T|O|E|X|3|M|H|K|AXI[M|H|O|O|P|C|T

| Y| o(X | Q|9 ||| B|B|b|3|O|d|a|6|r « 40393

Carackéres

Figure 1.2: OpenType Unicode support in OpenOffice. The top panel shows text in various alphabets
and the bottom panel the characters available in the Greek part of font layout.

-v, —--font-version Report font's version information.

-i, --info Report font's names and designer/vendor info.
-g, --glyphs Report font's glyph names.

-t, --tables Report font's OpenType tables.

Other options:

—--script=SCRIPT[.LANG] Set script used for --features [latn].
-V, --verbose Print progress information to standard error.
-h, --help Print this message and exit.
-q, --quiet Do not generate any error messages.

—--version Print version number and exit.

> otfinfo --info texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf

Family: Minion Pro

Subfamily: Regular

Full name: Minion Pro

PostScript name: MinionPro-Regular

Version: Version 2.012;PS 002.000;Core 1.0.38;makeotf.1ibl.6.6565
Unique ID: 2.012;ADBE;MinionPro-Regular

xetex-opentype.tex,v: 2.01 2009/06/15

14 OpenType

MinionPro-Regular Properties

Links || Deserption || License.
_ Geneal | Embedding W
Version | Hinting/Font Smoothing | Mames |

Standard Features
MinionPro-Regular contains 1663 glyphs and no A
standard kern pairs, see below Far OpenType kern pair
information, This Fant does not include embedded
bitmaps. There is a alyph mapped to Unicode® pasition —
20AC, suggesting that this font contains a euro

i~ OpenType Features

Type Layout Tables
Crillic {cyrl) Scripk
=1 Greek (grek) Script
(= Default Language System
- Access All Alkernates (aalt) Feature
- Small Capitals From Capitals {c2sc) FeatL s
& | &

Above shows supparted Scripts, Language Systems and
Features in GSUE andfor GPOS OpenType Lavout kables,

|

Features

_Lhks | Descrption |
Version |
General

H:int_ing/ifg_rlt Sl_'go_;%in-g- : it
Embedding |

CharSet/Uinicods |

Font Encoding Tvpe
Unicods (IS0 10646-2)

Supported Unicode Ranges

Biasic Latin ~
Latin-1 Supplement
Latin Extended-A

Latin Extended-B
Spacing Modifier Letters
Gresk

Supported Code Pages

1252
1250
1251
1253
1254
1257

Unicode(® is & registered trademark of Unicode, Inc,

Latin 1

Latin 2: East Europe
Cyrillic

Greek

Turkish

‘Windoves Baltic

|

Figure 1.3: Microsoft’s Fonts Extension utility displays OpenType features for MinionPro-Regular and
the supported Character sets for MyriadPro-Bold when you right-click on the font (This utility, ttfext,
adds several new property tabs to the standards properties dialog box, such as information relating to
font origination and copyright, the type sizes to which hinting and smoothing are applied, and the code
pages supported by extended character. It can be downloaded from http: //www.microsoft.com/
typography/TrueTypeProperty2l.mspx.)

Designer:
Vendor URL:
Trademark:
Copyright:
License URL:

Robert Slimbach

http://www.adobe.com/type/
Minion is either a ...

© 2000, 2002,

2004 ...

http://www.adobe.com/type/legal.html

> otfinfo --script texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf
cyrl Cyrillic latn.DEU Latin/German (Standard)
grek Greek latn.MOL Latin/Moldavian

latn Latin latn.ROM Latin/Romanian

latn.AZE Latin/Azeri latn.SRB Latin/Serbian

latn.CRT Latin/Crimean Tatar latn.TRK Latin/Turkish

> otfinfo --tables texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf

64
132417
5228
40074
13872
96
4048

BASE
CFF

DSIG
GPOS
GSUB
0s/2
cmap

54
36
6652
6
1533
32

head
hhea
hmtx
maxp
name
post

> otfinfo --features texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf

xetex-opentype.tex,v: 2.01

2009/06/15

15

POSTSCRIPT FONTS AND BEYOND

aalt Access All Alternates c2sc Small Capitals From Capitals
case Case-Sensitive Forms cpsp Capital Spacing

dlig Discretionary Ligatures dnom Denominators

fina Terminal Forms frac Fractions

hist Historical Forms kern Kerning

liga Standard Ligatures lnum Lining Figures

numr Numerators onum Oldstyle Figures
ordn Ordinals ornm Ornaments

pnum Proportional Figures salt Stylistic Alternates
sinf Scientific Inferiors size Optical Size

smcp Small Capitals ss01 Stylistic Set 1

ss02 Stylistic Set 2 sups Superscript

tnum Tabular Figures zZero Slashed Zero

Just van Rossum’s ttx utility" can decompile the contents of an OpenType font and output it in
XML format. This comes in handy if you want to study the contents of a given font (e.g., its tables) or

(slightly) modify it.
> ttx --help
usage: ttx [options] inputfilel [... inputfileN]
TTX 2.0bl -- From OpenType To XML And Back

If an input file is a TrueType or OpenType font file, it will be
dumped to an TTX file (an XML-based text format).

If an input file is a TTX file, it will be compiled to a TrueType
or OpenType font file.

Output files are created so they are unique: an existing file is
never overwritten.

General options:

-h Help: print this message

-d <outputfolder> Specify a directory where the output files are
to be created.

-v Verbose: more messages will be written to stdout about what
is being done.

Dump options:

-1 List table info: instead of dumping to a TTX file, list some
minimal info about each table.

-t <table> Specify a table to dump. Multiple -t options
are allowed. When no -t option is specified, all tables
will be dumped.

-x <table> Specify a table to exclude from the dump. Multiple
-x options are allowed. -t and -x are mutually exclusive.

-s Split tables: save the TTX data into separate TTX files per
table and write one small TTX file that contains references
to the individual table dumps. This file can be used as
input to ttx, as long as the table files are in the
same directory.

-1 Do NOT disassemble TT instructions: when this option is given,
all TrueType programs (glyph programs, the font program and the

'Written in Python and part of the FontTools toolset (sourceforge.net/projects/fonttools).

xetex-opentype.tex,v: 2.01 2009/06/15

14 OpenType

pre-program) will be written to the TTX file as hex data
instead of assembly. This saves some time and makes the TTX
file smaller.

Compile options:

-m Merge with TrueType-input-file: specify a TrueType or OpenType
font file to be merged with the TTX file. This option is only
valid when at most one TTX file is specified.

-b Don't recalc glyph bounding boxes: use the values in the TTX
file as-is.

Thus, to decompile a font myfont . ot £ just specify:
> ttx myfont.otf

This will write a file myfon. ttx in the directory where the font file resides. If you are only interested
in two tables (e.g., GSUB and GPOS), specify them on the command line:

> ttx -t GSUB -t GPOS myfont.otf

To convert an XML file myfont . ttx back into an OpenType or TrueType file is similarly easy:

> ttx myfont.ttx

It you want to introduce modifications (e.g., given in XML format in the file myfontmods. t tx) into
an OpenType file, use the —-m option, as follows:

> ttx -m myfont.otf myfontmods.ttx

A more explicit example with the font MinionPro follows.

> ttx -1 /texlive/2007/texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf

Listing table info for
"/texlive/2007/texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf":

tag checksum length offset tag checksum length offset
BASE 0x086729a7 64 199052 CFF 0x101232c2 132417 6032
DSIG 0x446dbd94 5228 199116 GPOS 0xx71552700 40074 158976
GSUB 0xx3bf7bcba 13872 145104 0S/2 0x40e57e9f 96 320
cmap 0xOcedc8fl 4048 1952 head O0xx2l67aded 54 220
hhea 0x09140bb5 36 276 hmtx 0xx37425493 6652 138452
maxp 0x067£5000 6 312 name 0x3cf7b183 1533 416
post O0x0x47ffce 32 6000

ttx -d. -t head /texlive/2007/texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf

Dumping "/texlive/2007/texmf-commercial/fonts/opentype/adobe/minionpro-regular.otf"
to "./minionpro-regular.ttx"...

Dumping 'head' table...

> less ./minionpro-regular.ttx

<?xml version="1.0" encoding="IS0-8859-1"7?>

<ttFont sfntVersion="OTTO" ttLibVersion="2.0bl">

<head>

<!-- Most of this table will be recalculated by the compiler -->
<tableVersion value="1.0"/>
<fontRevision value="2.0119934082"/>

17

xetex-opentype.tex,v: 2.01 2009/06/15

POSTSCRIPT FONTS AND BEYOND

<checkSumAdjustment value="-0x107d913c"/>
<magicNumber value="0x5f0f3cf5"/>

<flags value="00000000 00000011"/>
<unitsPerEm value="1000"/>

<created value="Tue Jun 29 11:41:10 2004"/>
<modified value="Tue Jun 29 11:41:10 2004"/>
<xMin value="-290"/>

<yMin value="-360"/>

<xMax value="1684"/>

<yMax value="989"/>

<macStyle value="00000000 00000000"/>
<lowestRecPPEM value="3"/>
<fontDirectionHint value="2"/>
<indexToLocFormat value="0"/>
<glyphDataFormat value="0"/>

</head>
</ttFont>

For reasons of efficiency TrueType and OpenType font instances can be grouped into “collection”
(.ttc), so that different fonts can share common tables to describe glyphs. Some programs are not
able to extract the various font components from such a collection. To help with this problem a small
utility, ttc2ttf, exists to extract the font instances from a collection.

xetex-opentype.tex,v: 2.01 2009/06/15

CHAPTER 2

XJIEX: TEX meets Openlype
and Unicode

2.1 X§IgX: a historical introduction and some basics. Lo oo o 21

2.2 X3IEX: typesetting with glyphs, characters and fonts
2.3 Supplementary commands introduced by X3lgX

2.5 X§lgX and other engines

XHTEX is a typesetting system based on a merger of e-TgX with Unicode and modern font technologies.
Jonathan Kew is the main developer behind XgTEX. XqTEX’s main aim is to deal with the complexities
(notice the colored parts on the characters in Figure 2.1) needed to typeset texts in the various scripts
used in the world (Figure 2.2 on the next page), in particular in Asia (Figure 2.3 on the following page).

e il 3V0 B
el
8)+Q§2=&m9

Fe <O Fo

kat kit kot

Figure 2.1: Complexities when dealing with various languages

X4TX: TEX MEETS OPENTYPE AND UNICODE

Scripts Around the World

RNV < ongalan ﬂ
ns 36l o\ qAE

" Simplfied

p (U n ﬁiﬁ A\ St iz Rl 2

Armenian Y o

o gBH ‘e P

Rssyrizn A \\ BNS ! Esel(mkana
o 06

Cohaks

LY}
" . Korean Hangul

=5
H

Py
=

170, LU
~bns
Ramin

bns

Roman

/] ey Roman
F A ’

Figure 2.3: Asian scripts

20

xetex-general.tex,v: 2.02 2009/06/15

2.1 X3IgX: a historical introduction and some basics

We start the chapter with an introduction, a short history and an overview of the basic operating
principles of X4IEX (Section 2.1). X4IEXs character/glyph model, its typesetting algorithm and the way
it handles fonts is the subject of Section 2.2.

Section 2.3 presents in detail the supplementary commands introduced by X§TEX, in particular its
extension to TeX’s \ font command to take full advantage of the possibilities of the OpenType fonts.
A BTEX interface to X4IEX’s font handling is presented in Section 2.4.

2.1 XgIgX: a historical introduction and some basics

XgIEX" was developed at SIL? by its author Jonathan Kew. One of X{IEX’s important aims is to allow
the TEX engine to directly use fonts available on the operating system. Technically this is implemented
by augmenting TgX’s \ font command so that it asks the host operating system to locate a given font
(using its real name, as known to the operating system, not some cryptic filename, e.g., a la Berry) in
whatever font collection available. This means that all fonts known on a system and available to the
user interface become usable for typesetting in XeTeX and with the same names. Hence it is no longer
necessary to run any TgX-specific procedures (e.g., fontinst, or apply one of the recipes described ear-
lier in this chapter). When XqIEX is instructed to use a font, it locates the actual font file itself (it can
handle all three variants OpenType, PostScript Type 1, and TrueType), and no longer needs a . t fm file.
XeTeX’s paragraph building routine thus obtains metric information about the character glyphs directly
from the font file. In addition, it has to take care of the complexities of mapping characters to glyphs,
particularly in cursive and non-Latin scripts. Therefore, XeTeX does not build its paragraphs from lists
of characters, but from “words”, each of which consists of a whole run of consecutive characters in a
given font. Linguistical and typographical transformations and effects are delegated to the appropri-
ate “layout engine” (XgIEX has interfaces to ATSUL? ICU,* and SIUs Graphite).” The result is an array
of glyphs and their positions that represent words as laid out using the current font. From this list of
words, which are interleaved with glue, penalties, etc., a paragraph is built. Of course, when hyphen-
ation is required, “words” may have to be taken apart and reassembled afterwards using possible break
positions. Nevertheless the basic idea remains: collect runs of characters, hand them down as complete
units to a font rendering library, which is capable of handling the layout at the level of the individual
glyphs.

XHTEX works with an extended version of the existing dvipdfmx PDF driver, where the help of
Jin-Hwan Cho has to be acknowledged. Akira Kakuto’s W32tex (http://www.fsci.fuk.kindai.
ac.jp/kakuto/win32-ptex) has contributed a lot to make XgIX available on Microsoft Windows.
Ross Moore has worked on graphics and color drivers, while Miyata Shigeru has improved the handling
of vertical text and CJK support in both XgTgX itself and the driver, and provides support for PSTricks
graphics.

"This section is based on an interview with XgIEX’s author Jonathan Kew. For the full text of the interview see ht tp: //tug.
org/interviews/interview-files/jonathan-kew.html.

*SIL (initially known as the Summer Institute of Linguistics, see http: //www.sil.org for more information) was created
in 1934. It now has about 5,000 collaborators coming from over 60 countries. SIUs main activity is the linguistic investigation of
some 1,800 languages spoken by more than a billion people in more than 70 countries. In particular, SIL publishes Ethnologue,
languages of the world (http://www.ethnologue.com/), a book which describes 6912 languages spoken on earth.

*Apple Type Services for Unicode Imaging is the technology behind all text drawing in Mac OS X, and is thus available on
that platform only. ATSUI allows fine control over layout features, provides advanced multilingual text-processing services, and
supports high-end typography. For details see http: //developer.apple.com/documentation/Carbon/Conceptual/
ATSUI Concepts/.

*International Components for Unicode. ICU is a widely portable set of C/C++ and Java libraries providing Unicode and global-
ization support for software applications. ICU ensure that applications give the same results on all platforms and between C/C++
and Java software, see http://www.icu-project.org/.

*Graphite is a project to provide rendering capabilities for complex non-Roman writing systems. Graphite runs on various
computer platforms and allows the creation of “smart fonts” which support displaying in writing systems with various complex
behaviors. Details are available at http://scripts.sil.org/RenderingGraphite.

21

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

BTEX integration for XqIEX is for a large part the work of Will Robertson.' Although XqTEX ac-
cepts Unicode input and supports OpenType fonts, X§IEX’s interfaces with OpenType fonts is rather
low-level. For instance, font features, such as using lowercase numbers instead of uppercase numbers,
are activated with hard to remember strings such as +onum. Will Robertson’s fontspec package pro-
vides a more readable and easy to use interface to such things with keyval-type options, such as "Num-
bers=Lowercase" for the above example. If you want to use a new OpenType (or TrueType) font,
you no loner need to mess around with extra files for font metrics and font definitions. It is sufficient
to declare your new font with the command \setmainfont in the preamble to select that font as the
main document font.

By default, BTEX’s NFSS mechanism only deals well with “macroscopic” font variations, such as
weight, shape and size. fontspec extends BTEX’s font handling by providing support for “font features”,
which allow the user at any point in the document to vary a broad range of typographical details by
using different font instances.

2.1.1 A brief history
o April 2004: X§TgX 0.3 was relased to the TEX community (on Mac OS X only) and offered:

integrated Unicode support

access to all fonts installed on the computer

- AAT (Apple Advanced Typography) for typographic features
Quicktime for graphics support

e February 2005 : X§TEX 0.9 was released with as features:

- Opentype support
- compatibility with more important BIEX packages

e April 2006 (BachoTgX): XgIEX for Linux was released (first public announcement of the availability
of X4IgX)

e June 2006: Akira Kakuto announces the availability of X§IEX on MS Windows

e February 2007: TgXLive 2007 contains X§TEX 0.996 for all supported binary platforms

e September 2007: X4IEX 0.997 available with MikTeX 2.7 (beta)

e Fall 2008: TgXLive 2008 contains XgIEX 0.999 for all supported binary platforms

e Summer 2009: TgXLive 2009 contains XgIEX 0.999.5 for all supported binary platforms

2.1.2 X3IgX: basic principles
e based on e-TEX’s typesetting engine

e includes Tex--XeT (commands \beginL, \endL, \beginR and \endR activated with
\TexXeTstate=1) for bi-directional typesetting (Arabic, Hebrew, etc.)

e Unicode encoding (UTF-8 or UTF-16) used by default

o most BIEX extensions (e.g., graphics, xcolor, geometry, crop, hyperref, pgf) now automatically detect
the presence of the X§IEX engine and are compatible with it

e directly uses OpenType, TrueType and PostScript fonts installed on the system without the need
to create TpX-specific files (. tfm, . v£, . £4, etc.)

'Seehttp://tug.org/interviews/interview-files/will-robertson.html foran interview with Will Robert-
son.

xetex-general.tex,v: 2.02 2009/06/15

2.2 XJIgX: typesetting with glyphs, characters and fonts

e provides access to OpenType features (ligatures, swash, glyph alternatives, dynamic attachment of
accents, etc.)

e thanks to Unicode provides access to characters in extended alphabetic (Latin, Cyrillic, Greek,
Arabic, Devanagari, etc.) and complex scripts.

o allows the concurrent use of multiple scripts in a single document thus making processing multi-
lingual texts much simpler

XHTEX’s direct use of Unicode characters as input and of OpenType Unicode-encoded fonts makes
pre-processors or complex macros for handling composite characters or complex scripts mostly un-
necessary. As an example let us consider the way TgX and XgIgX handle some input

TEX input XAIEX input typeset output notes

\'{a} \'{e} \"{o} & e o aeo typical accents

\c{c} \AA c A ¢ A composed characters
d\v{z}abe {\djlak dzZabe dak dzabe dak more composed characters
-—= \char"2014 — specific ligature in TgX fonts
α \char"1D6FC « mathematical symbol (plane 1)
{\dn acchaa} qAFZT S TgX needs ad hoc preprocessor

2.2 XgIpX: typesetting with glyphs, characters and fonts

XATEX delegates the rendering of Unicode characters to the freetype library' and uses the font configu-
ration library fontconfig® for accessing font files (other than TEX-specific fonts). The fontconfig library
lets you configure, customize and manage fonts for all applications which need to access fonts present
on your computing system.

2.2.1 Accessing font with fontconfig

The information concerning fonts is stored in XML format® and you, as user, should specify where your
OpenType fonts live in the file $HOME/ . fonts. conf, as in the following example of such a file.

<?xml version="1.0"72>

<!DOCTYPE fontconfig SYSTEM "fonts.dtd">

<!-- /etc/fonts/fonts.conf file to configure system font access -->
<fontconfig>
<dir>/home/goossens/texlive/2007/texmf-update/fonts/opentype</dir>
<dir>/home/goossens/texlive/2007/texmf-commercial/fonts/opentype</dir>
<dir>/home/goossens/texlive/2007/texmf-dist/fonts/opentype</dir>
</fontconfig>

On Microsoft Windows, when running MikTeX, the file fonts. conf contains a line to include
the file localfonts.conf. Both these files live in the directory

c:\Documents and Settings\All Users\Application Data\MiKTeX\2.7\fontconfig\config

!See http://sourceforge.net/projects/freetype/.

*See http://fontconfig.org/wiki/. You need at least fontconfig version 2.4 for X§IEX to function correctly.

*These files use a syntax defined by a grammar specified as a DTD (/etc/fonts/fonts.dtd). The system-wide configu-
ration file lives in /etc/fonts/fonts.conf

23

xetex-general.tex,v: 2.02 2009/06/15

XFIgX: TEX MEETS OPENTYPE AND UNICODE

The file localfonts. conf has the following content.

<?xml version="1.0"?2>

<fontconfig>

<dir>C:\WINNT\Fonts</dir>

<dir>C:\Program Files\MiKTeX 2.7\fonts/typel</dir>
<dir>C:\Program Files\MiKTeX 2.7\fonts/opentype</dir>
<dir>c:\TeX1live2007\texmf-dist\fonts\opentype</dir>
<dir>c:\TeXlive2007\texmf-update\fonts\opentype</dir>
<dir>c:\TeXlive2007\texmf-commercial\fonts\opentype</dir>
</fontconfig>

Note that MiKTeX includes by default Microsoft Window’s (\WINNT\Fonts), as well as its own stan-

dard font directories. We added three other ones from the TgXLive trees (as in the example above).

The fontconfig library comes with three programs, two for providing information about the font
files declared (i.e., findable by fontconfig) on your system (fc-match and fc-list), and one (fc-cache) for
(re)generating a font cache of all fonts (a £c-cache command should be issued each time a new font

is installed or deleted).

> fc-1list --help

usage: fc-list [-vV?] [--verbose] [--version] [--help] [pattern] element
List fonts matching [pattern]

-v, —--verbose display status information while busy

-V, --version display font config version and exit

-?, --help display this help and exit

> fc-match --help

usage: fc-match [-svV?] [--sort] [--verbose] [--version] [--help] [pattern]
List fonts matching [pattern]

-s, --sort display sorted list of matches

-v, --verbose display entire font pattern

-V, --version display font config version and exit

-?, --help display this help and exit

> fc-cache --help

usage: fc-cache [-frsvV?] [--force|--really-force] [--system-only] [--verbose] [--version]
Build font information caches in [dirs

(all directories in font configuration by default).

-f, --force scan directories with apparently valid caches
-r, —-really-force erase all existing caches, then rescan

-s, —--system-only scan system-wide directories only

-v, —--verbose display status information while busy

-V, --version display font config version and exit

-?, --help display this help and exit

> fc-1list 'Minion Pro'

Minion Pro,Minion Pro Subh:style=Italic Subhead,Italic

Minion Pro:style=Bold Italic

Minion Pro,Minion Pro SmBd Cond Capt:style=Semibold Cond Caption,Regular
Minion Pro,Minion Pro Cond Disp:style=Bold Cond Display,Bold

Minion Pro,Minion Pro Disp:style=Display,Regular

Minion Pro,Minion Pro SmBd Subh:style=Semibold Italic Subhead,Italic
Minion Pro,Minion Pro SmBd Cond Capt:style=Semibold Cond Italic Caption,Italic
Minion Pro,Minion Pro Capt:style=Bold Caption,Bold

Minion Pro,Minion Pro Cond Subh:style=Bold Cond Italic Subhead,Bold Italic
Minion Pro,Minion Pro SmBd:style=Semibold,Regular

Minion Pro,Minion Pro Cond Disp:style=Bold Cond Italic Display,Bold Italic
Minion Pro:style=Regular

Many more lines

Minion Pro:style=Bold

Minion Pro,Minion Pro Cond:style=Bold Cond,Bold

Minion Pro,Minion Pro Cond:style=Bold Cond Italic,Bold Italic
Minion Pro,Minion Pro SmBd:style=Semibold Italic,Italic
Minion Pro,Minion Pro Disp:style=Italic Display,Italic

24

xetex-general.tex,v: 2.02 2009/06/15

[dirs]

2.2 XJIgX: typesetting with glyphs, characters and fonts

2.2.2 Specifying character codes

The first step towards Unicode support in TgX is to expand the character set beyond the original 256-
character limit. At the lowest level, this means changing internal data structures throughout, wherever
characters were stored as 8-bit values. As Unicode scalar values may be up to U+10FFFF, an obvious
modification would be to make “characters” 32 bits wide, and treat Unicode characters as the basic
units of text.

However, in X§TEX a pragmatic decision was made to work internally with UTF-16 as the encoding
form of Unicode, making “characters” in the engine 16 bits wide, and handling supplementary-plane
characters using UTF-16 surrogate pairs. This choice was made for a number of reasons:

o X{TRX uses operating system applications program interfaces that expect UTF-16 encoded streams,
so working with this encoding form avoids the need for conversion at this interface.

e Many of standard TEX’s internal tables are implemented as 256-element arrays indexed by character
code. In XgIEX these arrays have been enlarged to 65,536 elements each to allow them to be indexed
by UTF-16 code values.!

o These per-character arrays are used to implement character “categories’, used in parsing input text
into tokens, as well as case conversions and “space factor” (a property used to modify word spacing
for punctuation in Roman typography). In practice, it seems unlikely that there will be a great need
to customize these character properties for individual supplementary-plane characters. They are
unlikely to be wanted as escape characters or other special categories of TgX input; need not have
the “letter” property that allows them to be part of TgX control sequences; and probably do not
need to be included in automatic hyphenation patterns.

In view of these factors, XqIgX works with UTF-16 code units, and Unicode characters beyond
U+FFFF cannot be given individually-customized TgX properties. They can still be included in docu-
ments, however, and will render correctly (given appropriate fonts) as the UTF-16 surrogate pairs will
be properly passed to the font system.

XHTEX uses Unicode’s 16-bit UTF-16 encoding

e characters encoded in 16 bits

- uses Unicode’s UTF-16 encoding

- exception: a few ancient differently-encoded fonts
o extension of TEX primitives

- \char, \chardef accept numbers up to 65536

- four-digit notation using the syntax "~ "abed
\char"5609°**~6167 = B

e Unicode characters in the upper (> 0) planes

- use of surrogates (standard UTF-16)

- all right for typesetting

'In principle, using full 32-bit wide arrays would be possible but they would make for extremely large arrays and have a very
large memory footprint. Some kind of sparse array implementation would be necessary, but this requires significant additional
development and testing, and might impact performance of key inner-loop parts of the TgX system. Therefore the more pragmatic
16-bit approach has been adopted.

25

xetex-general.tex,v: 2.02 2009/06/15

WAl XTeX: TEX MEETS OPENTYPE AND UNICODE

- does not allow text manipulation in the input stream on the level of the individual character
e increased size for internal code tables for \catcode, \1ccode, \uccode, \sfcode

“XATEX plain” initialises its tables with Unicode code points

- \lowercase{D%IN} dZin

\uppercase{Esi eyama klo miafe nuvowo da vo la}
ESI EYAMA KLO MIAFE NUVOWO DA VO LA

\catcode'\ F=\active \defF{..}

XATEX’s default input encoding is Unicode (UTEF-8 or UTF-16). XIEX automatically detects the
encoding used in the input file. If a non-Unicode encoding is used, it has to be specified with a
\XeTeXinputencoding command (see page 41). Such historical encodings are handled with the
ICU conversion routines.

2.2.3 Hyphenation

At the moment XgTgX reuses TEX’s hyphenation patterns by adding an extra Unicode layer pro-
vided by language-specific intermediate files in the xu-hyphen directory’. An example of such a file
(xu-frhyph. tex which handles the French patterns) follows.

$%%%%%% xu-frhyph.tex (Wrapper for XeTeX to read frhyph.tex)
\begingroup

\expandafter\ifx\csname XeTeXrevision\endcsname\relax

\else

frhyph.tex uses *"xx for Tl characters

redefine them to access the required Unicode characters

o0 do oo

(only \oe{} actually matters here!)
\input xu-tl.tex
\fi
\input frhyph.tex
\endgroup

It is seen that xu-frhyph. tex first loads the generic file xu-t1. tex, which makes the letters in the
T1-encoded hyphenation pattern files active to map them onto their Unicode equivalents. Part of the
contents of that files follows.

©00000000000000000000000 0000000000000000000000000000000
//////////////////////// xu-tl.tex $3%%%93%%%293%%%9%%%%%%%

o\
o\
o)
o)
o)
o\
o\
o)
o)
o\
o)
o)
o\
o)
o)
o)
o\
o\
o\
o)
o)
o)
o\
o\

make Tl letters \active and map them to Unicode character codes
(for use when loading hyphenation patterns that use *”xx notation
to represent characters in Tl font encoding, or literal 8-bit
bytes if read using \XeTeXinputencoding "bytes")

catcode \"=12 % ensure " isn't active or otherwise "weird"

o® o° od° o

~ =

catcode \"=7 % ensure "~ is the proper catcode for hex notation

o
°

\catcode"BO=\active \def""b0{""**"0159} % rcaron

\catcode"DF=\active \def""df{SS} % SS
\catcode"F7=\active \def""f7{""""0153}
\catcode"D7=\active \def""d7{~""""0152}

oe
OE

o o°

"With TgXLive this directory is at texmf-dist/tex/generic/xu-hyphen.

26

xetex-general.tex,v: 2.02 2009/06/15

2.2 XJIgX: typesetting with glyphs, characters and fonts

we don't handle the non-letter codes in the control range
but we'd better handle dotless-i (for Turkish)
\catcode"19=\active \def*"19{""""0131} % dotlessi

oo oo

For languages that do not use the Latin alphabet other similar redefinitions are made in the in-
termediate files. On top of that fully UTF-8encoded files exist for ancient, monotonic and polytonic
modern Greek and for Coptic.

To hyphenate words correctly hyphenation patterns have also been extended to 16 bits. As de-
scribed previously, an interface between 8-bit pattern files and X§TEX’s 16-bit variants exists. For pure
Unicode pattern files are simple Unicode data, without need of commands or active characters, as the
following examples show.

% hyphenate before and after independent vowel

1371

13m

121

% hyphenate following an independent vowel but never before
211

2t

2.2.4 Font management: the basics

XHIEX can use all modern font formats (PostScript Type 1, TrueType, OpenType) and gives access to
all fonts on your computer. Moreover, X{IEX lets you still use TgX-specific font files, such as t £m. The
latter are useful for math fonts or for non-Unicode encoded input files.

XHTEX extends TEXs \ font command (as explained later). In particular, you can specify the actual
name of a font, rather than its somewhat artificial 8-character equivalent in the Fontname scheme.'
Examples are

e \font\rm="Adobe Caslon Pro" at 1l4pt \rm Bonjour GUT2007 !
Bonjour GUT2007 !

e \font\it="Trebuchet MS" at 1l4pt \it Bonjour GUT2007 !
Bonjour GUT2007 !

e \font\ch="Viva Std" at 14pt \ch Bonjour GUT2007 !

Bonjour GUT2007 !

A PDF post-processor (by default xdvipdfmx on Linux) can use the three font formats mentioned
above. xdvipdfmx has access to all fonts usable by xetex, i.e., those in font directories declared to font-
config or in TEX’s texmf font trees of (this is in analogy to dvips). On the other hand, xdvipdfmx has
no support for bitmap fonts and limited xdvipdfmx generates PDF by default. It only includes the char-
acters of a font that are actually referenced into the PDF file. xdvipdfmx can generate an intermediate
“extended DVT” format (. xdv). This intermediate format can be useful when xetex encounters an error
and does not generate a PDF file. In that case you can use the following two-step process to investigate
the problem (note the use of the “verbosity” switch -vv).

> xelatex -no-pdf mydocument

> xdvipdfmx -vv -E mydocument.xdv

!Fontname is maintained by Karl Berry. Its documentation is available as an electronic document on CTAN at: info/
fontname.

27

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

28

2.2.5 Font mappings using TECKkit

TECkit (currently version 2.2, see http://scripts.sil.org/TECkit) is a low-level toolkit in-
tended to be used by other applications that need to perform encoding conversions (e.g., when im-
porting legacy data into a Unicode-based application). The primary component of the TECkit package
is therefore a library that performs conversions; this is the “TECkit engine”. The engine relies on map-
ping tables in a specific binary format (for which documentation is available); there is a compiler that
creates such tables from a human-readable mapping description (a simple text file).

Widely-used TgX keyboarding conventions such as \ ' {e} > “¢” or \pounds - £ are implemented
via TEX macros (and therefore easily adapted for Unicode-compliant fonts, by modifying the macro
definitions). In addition, there are a few established conventions that are implemented as ligature rules
associated with standard TgX fonts; these include --- > — (em-dash), ?* > 4 (Spanish inverted “?”),
and a few more. In principle, smart font technologies such as AAT and OpenType could implement
these same ligatures, providing the same behavior as traditional TEX fonts. But as these conventions
are peculiar to the TgX world, it is not realistic to expect them to be provided in mainstream, general-
purpose fonts.

Although it would usually be possible to simulate these ligatures via macro programming, it is
difficult to ensure that reprogramming widely-used text characters such as the hyphen, question mark,
and quotation marks will not interfere with other levels of markup in the source document. Instead,
XHIEX provides a mechanism known as “font mappings”, whereby a mapping of Unicode characters is
associated with a particular font, and applied to all strings of text being measured or rendered in that
font. This is implemented using the TECkit mapping engine.

While TECkit was primarily designed to convert between legacy byte encodings and Unicode, it can
also be used to perform transformations on a Unicode text stream, using the same mapping language
and text conversion library. The following shows the file tex-text .map (in fact its binary equivalent
tex—text.tec,whkh&muaﬂyhvaﬁnthetexmftﬁfinsubdhfcuﬂytexmf/fonts/misc/xetex/
fontmapping/), which provides support for normal TgX conventions.

; TECkit mapping for TeX input conventions <-> Unicode characters
; used with XeTeX to emulate Knuthian ligatures

; Copyright 2006 SIL International.
; You may freely use, modify and/or distribute this file.

LHSName "TeX-text"
RHSName "UNICODE"

pass (Unicode)

U+002D U+002D <> U+2013 ; —-— —-> en dash

U+002D U+002D U+002D <> U+2014 ; —-- -> em dash

U+0027 <> U+2019 ; ' —-> right single quote
U+0027 U+0027 <> U+201D ; ''" => right double quote
U+0022 > U+201D ; " -> right double quote
U+0060 <> U+2018 ; ~ —> left single quote
U+0060 U+0060 <> U+201C ; 77 => left double quote
U+0021 U+0060 <> U+00A1 ; !7 => inverted exclam
U+003F U+0060 <> U+00BF ; 2?7 —-> inverted question

When associated with a standard Unicode-compliant font in XgIgX, this has the effect of imple-

xetex-general.tex,v: 2.02 2009/06/15

2.2 XJIgX: typesetting with glyphs, characters and fonts

menting the legacy TEX conventions for dashes and quotes, as shown in the next example, without
requiring any TgX-specific features in the smart fonts themselves.

Exa.
2-2-1 !'Typing "quotes"---and dashes---the TgX way! \font\TestA="Times New Roman" at 9pt
\TestA ! Typing "quotes" (1--2)---and
I’Typing “quotes”—and dashes—the TgX way! " "dashes''---the \TeX\ way!\par
\bigskip
\font\TestB="Times New Roman:
mapping=tex-text" at 9pt
\TestB ! Typing "quotes" (1--2)---and
‘“dashes''---the \TeX\ way!\par
While this mechanism, associating a mapping defined in terms of Unicode character sequences,
was first devised in order to support legacy TgX input conventions, it can also be applied in other ways.
The following example shows how to typeset a single fragment of input text in two scripts by giving
different font specifications, one of which includes a transliteration mapping (in this case the mapping
file cyr-lat-iso9. tex must be findable by XgIgX).
Exa. .
2-2-2 Unicode \def\SampleText{Unicode \\
3TO YHUKAIIbHBLI KO Z1s1 0600 CUMBOIIA, STO YHUKAIEHEIA
HE3aBUCHMO OT TIATGOPMBEI, Kon nns yoBoro cumsosa, \\

He3aBUCUMMO OT maTdopmer, \\
HEe3aBHUCUMO OT IPOrpaMMEl,

HE3aBUCKMO OT NpoTpaMusl, \\
HE3aBHUCHUMO OT A3bIKa.

HE3aBUCUMO OT S3HKA.\par}
\font\gen="Gentium" at 9pt

Unicode \centering
eto unikal'nyj kod dla liibogo simvola, \gen\SampleText
nezavisimo ot platformy, \bigskip
nezavisimo ot programmy, \font\gentrans="Gentium:mapping=cyr-lat-iso9"
nezavisimo ot azyka. at 9pt \gentrans
\SampleText

2.2.6 Line breaks and justification

Some languages do not use spaces between words in the input file, so the line breaks must be generated
when typesetting the text.

e TgX normally breaks line at a point where there is “glue” associated to an inter-word space

e Chinese, Japanese, Thai, etc. do not leave spaces between words

o JUFEMES - | LEREDRERGTDERL YZEDofanIAFGMEoATED MEHD EREGTD ERUL pAfTEONE £ T A ONERSONES
SupR 28 buee any mcfefea AT wde b |fd SBEpy: ALHpeesiapis
Jubs A STHRP G0 LR A EESEES AERFESAN 288 LR 2o i) -

Thelinebreaking model implemented in the ICU library is used with: \XeTex1linebreaklocale "th"

o JUFENES - | LEREpRRRGTDARL HSEDOENIA FEMBOATED MRED EERGTDEFUL IR DL ES
T A omares O/ pbmn eadfts lhee 2oy an fiafean B meiidse b | S ve@RdsAL Hix
easflaEEubEs A TR0 ER A ERSRES TEFFESAN 28t uheE 2mp apad) - KT

29

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

30

Line justification of a text without spaces, including line breaking is a non-trivial task. One solution
is ragged typesetting (i.e., no text alignment to the right (or left) margin.

o IFISEPREIRFRISIINRIZEE TR R R BB RRIG IZ SN
Rr MEIEELR =g vuBEPRIRIREE R ST IR ERS BE TIRE
BRI 5 2SR I R R S E R IR 1)

Alternatively one can use the command \XeTeXlinebreakskip, which lets you introduce glue at
potential beak points.

o UiiME B IRENR fe SN RIS T ARFE LA TR AR B B IR SH KB I ML
IR MR R =g DB RR RAR R I ST IR EIE RIS B T IRE
PRI 5 SR I R R S E R IR 1)

2.2.7 Unicode Character/glyph model

An important aspect of rendering Unicode text is the character/glyph model; it is assumed that the
reader is familiar with this concept. Traditionally, TEX does not have a well-developed character/glyph
model. Input text is a sequence of 8-bit codes, interpreted as character tokens or other (e.g., control
sequence) tokens according to the scanning rules and character categories. These same 8-bit codes are
used as access codes for glyphs in fonts. It is possible to remap codes by TEX macro programming, and
the “font metrics” (.tfm) files used by TgX can include simple ligature rules (e.g.,fi > fi), but the model
is fairly rudimentary, and not adequate for script behaviors such as Arabic cursive shaping or Indic
reordering. To support the full range of complex scripts in Unicode, a more complete character/glyph
model is needed.

Rather than designing a text rendering system based on the Unicode character/glyph model from
scratch, it seemed desirable to leverage existing implementations, allowing TgX to take advantage of
the “smart fonts” and multilingual text rendering facilities found in modern operating systems and
libraries. Currently, XqIEX supports two such rendering systems: ATSUl on Mac OS X, and ICU on other
systems.

2.2.8 Using OpenType via ICU Layout

While the initial implementation of X{IEX was based on Apple’s ATSUI rendering system, the increas-
ing availability of fonts with OpenType layout features led to a desire to also support this font tech-
nology. Therefore, the system was extended by incorporating the OpenType layout engine from ICU4.!
Before laying out glyphs, it is necessary to deal with bidirectional layout issues; most “chunks” XgTEX
needs to measure will be unidirectional, but this is not always the case. With mixed-direction text, each
direction run is measured separately. The ICU LayoutEngine class is used to perform the actual layout
process, and retrieve the list of glyphs and positions. The resulting array of positioned glyphs is stored
within the “word node” in X§TEX’s paragraph list.

Internally, ICU-based OpenType rendering is handled in a very different way from ATSUI ren-
dering. With ATSUI, the output of the typesetting process includes the original Unicode strings and
the appropriate font descriptors; the PDF-generating back-end then reuses ATSUI layout functions to
actually render the text into the PDF destination. In the case of OpenType, however, the typesetting
process retrieves the array of positioned glyphs that result from the layout operation, and records this;
the back-end then merely has to draw the glyphs as specified, not repeat any of the text layout work.

'In addition to the actual layout engine, X§TEX uses ICU’s implementation of Unicode’s BiDI (bi-directional) algorithm.

xetex-general.tex,v: 2.02 2009/06/15

2.2 XJIgX: typesetting with glyphs, characters and fonts

When the TEX source calls for a particular font, X4TEX looks for specific layout tables within the
font (e.g., GSUB for OpenType) to determine which layout engine to use, and instantiates either an
ATSUI style or an ICU LayoutEngine as appropriate (for a font that supports both layout technologies,
XqIEX currently chooses the OpenType engine by default, but users can explicitly specify which one to
use). The difference in the implementation of the two technologies is, however, entirely hidden from
the main TgX program, which simply deals with “word nodes”, forming them into paragraphs and pages
once they have been measured by the appropriate smart-font engine.

XHTEX optimally exploits the Unicode characteristics present in OpenType fonts. Therefore, X4IEX
differs rather drastically from TgX’s traditional model, characterized by:

o TEX's fundamental typesetting unit is a code point of a given character in a particular font, where
TgX assumes that the dimensions of such a character are known and invariable

o ligatures are handled by a character substitution mechanism

e aparagraph is constructed from a sequence of character nodes, which are placed with great preci-
sion, interspersed with nodes of glue.

This is not optimal for Unicode, where a character might not correspond to a single known glyph.
Indeed, many scripts require contextual selection of glyphs (e.g., Arabic, Devanagari), so that characters
must be measured in context rather than in isolation.

XAIEX’s approach is the following:

o the typesetting process collects runs of characters (words) whose widths are obtained via the API
to the system libraries (e.g., ICU) to determine the widths,

e a XgIEX paragraph is a sequence of word nodes separated by glue.

Thus XHTEX’s typesetting engine places words rather than glyphs, the latter being drawn by the font
rendering engine. The following scheme illustrates this distinction between the TgX and X{IgX engines.
TgX : nodes in a paragraph XAIEX : nodes in a paragraph

char: T word: The

char: h

char: e [glue: word space}

[glue: word space]

char: g word: quick|

(char: q]
har:
[glue: word space]
-Z 1
word: fox
'!HHE!III'
(glue: word space] [glue: word space]

char: f

char: o

char: x

[glue: word space]
Depending on the tables present in a given font, X§IgX will use ATSUI (the equivalent of ICU on
Mac OS X) or ICU and localizes the requested font with the application fontconfig. Thus, the typesetting
process is completely independent of the underlying font technology (only the low-level layout engine,

31

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

32

which needs to determine the dimensions of the characters, has to know. Therefore a given source file
can refer at the same time to OpenType, AAT, and even TgX fonts).

By default XqIEX uses the xdvipdfmx output engine, which uses the freetype library (www.
freetype.org/) for rendering the images of the glyphs with great precision.

2.2.9 XgIgX’s hyphenation support

Implementing “word nodes” as “black boxes” within the main TgX program made it easy to form para-
graphs of such words, without extensive changes to the rest of TgX. A complication arose, however, in
that TEX has an automatic hyphenation algorithm that comes into effect if it is unable to find satisfactory
line-break positions for a paragraph. The hyphenation routine applies to lists of character nodes repre-
senting runs of text within a paragraph to be line-broken. But at this level, the program sees Unicode
“word nodes” as indivisible, rigid chunks.

Explicit discretionary hyphens may be included in TgX input, and these continue to work in X§TgX,
as they become “discretionary break” nodes in the list of items making up the paragraph. The word
fragments on either side, then, would become separate nodes in the list, and a line-break can occur
between them.

In order to reinstate hyphenation support, therefore, it was necessary to extend the hyphenation
routine so as to be able to extract the text from a word node, use TEX’s pattern-based algorithm to
find possible hyphenation positions within the word, and then replace the original word node with a
sequence of nodes representing the (possibly) hyphenated fragments, with discretionary hyphen nodes
in between.

A final refinement proved necessary here: once the line-breaks have been chosen, and the lines
of text are being “packaged” for justification to the desired width, any unused hyphenation points are
removed and the adjacent word (fragment) nodes re-merged. This is required in order to allow render-
ing behavior such as character reordering and ligatures, implemented at the smart-font level, to occur
across hyphenation points. With an early release of X{TEX, a user reported that OpenType ligatures in
certain words such as different would intermittently fail (appearing as different, without the ft ligature).
is was occurring when automatic hyphenation came into effect and a discretionary break was inserted,
breaking the word node into sub-words that were being rendered separately.

e aparagraph is built from a list of word boxes

- these boxes are treated as indivisible units in the token lists

- TgX can remain unaware of low-level details
e when an acceptable linebreak cannot be found the algorithm tries to hyphenate words

- extract the characters from the word nodes
- find break points using TgX’s hyphenation algorithm

- repackage words as word fragments and discretionary hyphenation nodes

e modify the node list to allow hyphenation of words

[Two] [glue] [different] [glue] [foxes}

[Two} [glue] [dif] [hyphen?} [fer] [hyphen?] [ent] [glue] [foxes]

e problem : the unused hyphenation points break rendering

xetex-general.tex,v: 2.02 2009/06/15

2.3 Supplementary commands introduced by X3IgX

(wo) (etue) [@if) (J (Fed () Two differ-

[ent] [glue] [foxes] entf0x35

e one has to re-merge word nodes after choosing breaks

(Two] (glue] (differ-]

Two differ-
(ent] (glue] {foxes) ent foxes

2.2.10 Running xetex

As explained in Section 2.1.2 XgIEX is a development of e-TgX and it builds on Karl Berry’s kpathsea
library for path searching as implemented in the Web2C version of TEX.' The xetex command thus
offers essentially the same options (type xetex --help to get a full list) as the tex command (e.g., the
version distributed with TgXLive). The more important additional ones are:

-etex enable the e-TgX extensions

-no-pdf generate XDV (extended DVI) output rather than PDF (see also page 27)

-output-driver=CMD use CMD as the XDV-to-PDF driver instead of xdvipdfmx, the default driver
used by xetex

2.3 Supplementary commands introduced by X3IgX

XAIEX offers a few additional features, most of which are available with the help of new commands or
via the higher level BTEX interface of Will Robertson’s fontspec package.

XqIEX extends TgX’s basic command with additional options to address the rich set of features
available in OpenType (and AAT) fonts, as follows.

\font\myname="[fontname] { font-options}:{font-features}"{IgX font-features}

The only mandatory part of this construct is fontname, the actual name of the font (as encoded in the
.ttfor .otf files, e.g, TeX Gyre Schola.

The xdvipdfmx driver can also use fonts that are not installed in the operating system. Such fonts
should have their name specified in square brackets. The full path can be specified in the font declara-
tion, as follows,

\font\myname="[/mydir/myfontfile]"

Alternatively, the current directory and the texmf trees can be searched for locating the given filename,
e.g., the following will select a Latin Modern font in the user’s TgX hierarchy.

\font\myname="[lmromanlO-regular]"

"The Web2C implementation of the TgX family of programs is a translation of the original WEB sources of these program into
the C programming language to allow easy compilation on all present-day computer systems. A detailed description is available
from its Web page (http://www.tug.org/web2c/) where you can find also the kpathsea manual. Currently Web2C is part of
TeXLive.

33

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

The argument font options can only be used when the font is selected through the operating
system (i.e., without square brackets), and may be any concatenation of the following:

/B Use the bold version of the selected font.

/I Use the italic version of the selected font.

/BI Use the bold italic version of the selected font.

/IB Sameas /BI.

/S=x Use the version of the selected font corresponding to the optical size x pt.
/AAT Explicitly use the ATSUI renderer (Mac OS X only).

/Icu Explicitly use the ICU OpenType renderer (only useful on Mac OS X).

The argument font-rfeatures isacomma or semi-colon separated list activating or deactivating
various AAT or OpenType font features, which will vary by font. The X§IgX distribution contains the
documentation file opentype-info.tex which lists all supported features available for the various
scripts and languages in the specified OpenType font."

OpenType font features are chosen by specifying their standard tags names,” separated by a comma
or a semicolon, and prepended with a + to turn them on, or - to turn them off.

Bold italic Minion Pro \font\wbi="Minion Pro/BI" at 12pt

SMALL cAPS BOLD ITALIC MINION PRO

34

\wbi Bold italic Minion Pro\par
\font\wbisc="Minion Pro/BI:+smcp" at 12pt
\wbisc Small caps bold italic Minion Pro

XqIEX offers a series of features that are available for any font, namely

mapping= Specifies the mapping for the given font. For example, mapping=tex-
text enables “classical” TEX mappings such as the sequence “~--" being turned into the proper
typographical glyph “—, etc.

color=RRGGBB[TT] Specifies the color for the given font as three pairs of hexadecimal RGB values.
An optional argument lets you specify a transparency value.

letterspace=x A space of x/S is added between words (S is the font size).

Depending on the script and language chosen a certain number of OpenType features, when avail-
able, will be activated by default.

Script and language are chosen as follows:
script=<script tag> selects the font script,

language=<lang tag> selects the font language.
Script (alphabet) tags are four-letter codes,” while language tags are three-letter codes.*

2.3.1 Specifying languages and scripts

Certain characters have a different presentation depending on the language in which they are used.
Below we show how identical input texts are rendered with identical fonts first in the default language

'A similar file, aat-info. tex, exists for displaying the characteristics of an AAT font.
*Seehttp://www.microsoft.com/typography/otspec/featuretags.htmforalist of available registered features.
*See http://www.microsoft.com/typography/otspec/scripttags.htm

“See http://www.microsoft.com/typography/otspec/languagetags.htm.

xetex-general.tex,v: 2.02 2009/06/15

Exa.
2-3-1

2.3 Supplementary commands introduced by X3IgX

(left) and then in Vietnamese, respectively, Turkish (right).
\font\Doulos="Doulos SIL" \font\DoulosViet="Doulos SIL:language=VIT"

Unicode cung cip mot con sd duy nhat Unicode cung cAp mot con sd duy nhat

cho moi ky tu cho mdi ky tu
\font\Minion="Minion Pro" \font\MinionTrk="Minion Pro:language=TRK"
gelen firmalar ... tarafindan gelen firmalari ... tarafindan

Moreover, certain languages need a language-specific rendering procedure to draw the form of the
letters, as the following examples of Arabic and Devanagari show.

e \font\x="Code2000:script=arab" \x lJt ;o5 > (s2 4
e \font\x="Code2000:script=deva" \x &M&l > Iévél

2.3.2 Specifying optional features
The font declaration can refer to one or more optional features.

e \font\x="Minion Pro" \x Hello TUG2008! 0123456789
Hello TUG2008! 0123456789

e \font\x="Minion Pro:+smcp"
HeLLo TUG2008! 0123456789

e \font\x="Minion Pro Italic:+onum"

Hello TUG2008! 0123456789

e \font\x="Minion Pro Italic:+swsh,+zero"

Hello TUG2008! 0123456789

Certain fonts come in a several optical sizes, so that the image of the character is optimized to the
typeset size used.

e Minion Pro typeset at 7pt,at 10pt,at 18pt,and at 24pt
seven ten eighteen twenty four

One can force a given optical size as shown with the following texts which are all typeset at 16pt,
but which use the optical size specified with the /s= specifier.

Minion Pro/s=7 Minion Pro Caption
Minion Pro/S=10 Minion Pro Text
Minion Pro/S=18 Minion Pro Subhead
Minion Pro/S=24 Minion Pro Display

35

xetex-general.tex,v: 2.02 2009/06/15

WAl XTeX: TEX MEETS OPENTYPE AND UNICODE

2.3.3 Support for pseudo-features

Sometimes it can be useful to “fake” some features by emulating them when they are not natively avail-
able in a given font. Examples are slanting (in the absence of a genuine Italic variant) or extending the
width of a font (when wider or condensed variants do not exist). These effects can be achieved with the
slant and extend pseudo-features, as the following example shows.

Charls SIL normal \font\x="Charis SIL" at 12 pt 2E)3(a2
. \x Charis SIL normal\\ [1lmm]
ChaI'IS SIL Slanted \font\x="Charis SIL:slant=0.2" at 12 pt
Charls SIL. eXtended \x Charis SIL slanted\\[lmm]
Ch&I’jS SIL Condensed s]anted \font\x="Charis SIL:extend=1.5" at 12 pt
k\ . d d’ . \ d \x Charis SIL extended\\[lmm]
Charis SIL condenses) anti-slanter \font\x="Charis SIL:slant=0.2;extend=0.8" at 12 pt
\x Charis SIL condensed, slanted\\[1lmm]
\font\x="Charis SIL:slant=-0.2;extend=0.8" at 12 pt
\x Charis SIL condensed, anti-slanted
2.3.4 Commands extracting information from OpenType fonts
XqIEX provides new commands to extract information from font files.
\XeTeXuseglyphmetrics
A counter which specifies whether the height and depth of characters must be taken into account in
the typesetting process (>0, the default), or whether a single height and depth for all characters is used
(<1).
Exa.
\font\minion="Minion Pro" at 12pt\minion 2-3-3
m|M g (} \XeTeXuseglyphmetrics=0 \fbox{m}\fbox{M}\fbox{g}\fbox{G}

\par\medskip

E \XeTeXuseglyphmetrics=1 \fbox{m}\fbox (M} \fbox{g}\fbox{G}

36

\XeTeXglyph{Glyph slot}

Inserts the glyph in s1ot of the current font (font specific, i.e., this command will give different output
for different fonts).

\XeTeXglyphindex"glyphname"

This command, that must be followed by a space or \relax, returns the glyph slot corresponding
to the (possibly font specific) g1yphname in the currently selected font.

xetex-general.tex,v: 2.02 2009/06/15

Exa.
2-3-4

2.3 Supplementary commands introduced by X3IgX

\XeTeXcharglyph{charcode}

This command returns the default glyph number of character charcode in the current font (the value
of zero is returned if the character is absent from the font).

The glyph slot in Minion Pro
for the copyright symbol is:
170 (using the font-specific
glyph name) or 170 (using the
unicode character slot).

This glyph may be typeset with
the font-specific glyph slot
printed above °, or directly by
storing the slot number in a
counter, as follows: ©. The
Unicode code can also be used
directly to address the
character slot, as follows: ©

\char"00A9 \space (\TeX{} syntax) or \symbol{"00A9} (\LaTeX{} syntax).

(TgX syntax) or © (ETgX

syntax).

\XeTeXfonttype{ font}
Returns the number corresponding to the renderer which is used for font:
0 for TgX (standard TgX-based . t £m font);
1 for ATSUI (usually an AAT font);
2 for ICU (an OpenType font);
3 for Graphite.

37

xetex-general.tex,v: 2.02

\font\minion="Minion Pro"\minion
\raggedright

The glyph slot in Minion Pro for the copyright symbol is:
\the\XeTeXglyphindex"copyright" \space (using the font-specific glyph
name) or \the\XeTeXcharglyph"00A9 \space

slot) .

(using the unicode character

\newcounter{Cslot}
\setcounter{Cslot}{\the\XeTeXglyphindex"copyright"}

\medskip

This glyph may be typeset with the font-specific glyph slot printed
above \XeTeXglyphl70,
counter,

or directly by storing the slot number in a
\XeTeXglyph\value{Cslot}.
also be used directly to address the character slot,

as follows: The Unicode code can

as follows:

2009/06/15

WAl XTeX: TEX MEETS OPENTYPE AND UNICODE

Exa

"[cmtt10]" is rendered by ICU. \usepackage {ifthen} 235
"LMRoman10 Regular" is rendered by ICU. \newcounter{Cfont}

"[lmsans10-bold]" is rendered by ICU. \newcommand\whattype[1]{%

"Charis SIL" is rendered by ICU. \texttt{\fontname#l} is rendered by

"Charis SIL/AAT"isrendenxiby ICU. \setcounter{Cfont}{\XeTeXfonttype#l}
\ifthenelse{\value{Cfont}=0}{\TeX}{%

\ifthenelse{\value{Cfont}=1}{ATSUI}{%
\ifthenelse{\value{Cfont}=2}{ICU}{%
\ifthenelse{\value{Cfont}=3}{Graphite}%
{\typeout {Renderer number not known}}}}}%
-\par}

\font\fa="[cmttl0]"
\font\fb="LMRomanl0 Regular"
\font\fc="[1lmsans10-bold]"
\font\fd="Charis SIL"
\font\fe="Charis SIL/AAT"
\whattype\fa\whattype\fb
\whattype\fc\whattype\fd\whattype\fe

\XeTeXOTcountscripts{Font}

Returns the number of scripts present in a font.

Exa.

The number of scripts in Minion Pro is 4. \newcommand {\NumScripts} [1]{% 2:36
The number of scripts in Charis SIL is 2. \fontitestfont="#1"\testfont
The number of scripts in Arial Unicode MS is 8. The number of scripts in #1 is

. . . \the\XeTeXOTcountscripts\testfont.
The number of scripts in Code2000 is 21. i o b }
\NumScripts{Minion Pro}\par

\NumScripts{Charis SIL}\par
\NumScripts{Arial Unicode MS}\par
\NumScripts{Code2000}

\XeTeXOTscripttag{Font} {n}

Expands to a counter corresponding to script tag n in the font.

\XeTeXOTcountlanguages{Font}{ScriptTag}

Expands to counter corresponding to the number of languages supported by the given script in the
font.

\XeTeXOTlanguagetag{Font} {ScriptTag}{n}

Expands to a counter corresponding to language tag n in the given script of the font.

\XeTeXOTcountfeatures{Font}{ScriptTag}{LanguageTag}

Expands to a counter corresponding to the number of features for the given script and language tags
of the font.

38

xetex-general.tex,v: 2.02 2009/06/15

2.3 Supplementary commands introduced by X3IgX

Type (Class) Meaning Example | Type (Class) Meaning Example
\mathord (0) Ordinary / \mathopen (4) Opening (
\mathop (1) Large operator \int \mathclose (5) Closing)
\mathbin (2) Binary operation + \mathpunct (6) Punctuation ,
\mathrel (3) Relation = \mathalpha (7) Alphabet character 2
Table 2.1: Mathematics symbol types
\XeTeXOTfeaturetag{Font}{ScriptTag}{LanguageTag} {n}
Expands to a counter corresponding to feature tag n for the given script and language tags in the font.
A file OpenType-info. tex that is available with the XqTgX distribution uses all the commands
to list the features for all languages and scripts supported by a given OpenType font.
2.3.5 Maths fonts
To handle maths parameters more easily X7IEX adds a series of new primitives to standard TgX. In the
description of these supplementary commands that follows, Fam is a number (0-255) representing the
font to use in maths and MathType is an integer in the range 0-7 (Table 2.1) defining the nature (class
in TgX language, see [4, p. 154]) of the math symbol, i.e., whether it is a binary operator, a relation, etc.
(IA)TEX needs this information to leave the correct amount of space around the symbol when it is used
in a formula (see [5, Section 8.9] for more details).
\XeTeXmathcode{char slot}[=]{MathType}{Fam}{GlyphSlot}
Defines a maths glyph accessible via an input character. Note that the input takes three arguments unlike
TEX’s \mathcode.
\XeTeXmathcodenum{ CharSlot} [=] {MathType/Fam/GlyphSlot}
Pure extension of \mathcode that uses a “bit-packed” single number argument. Can also be used to
extract the bit-packed mathcode number of the Charslot if no assignment is given.
\XeTeXmathchardef{cmd} [=] {MathType} { Fam}{GlyphSlot}
Defines a maths glyph accessible via a control sequence.
\XeTeXdelcode{CharSlot} [=]{Fam}{GlyphSlot}
Defines a delimiter glyph accessible via an input character.
\XeTeXdelcodenum{CharSlot} [=]{Fam/GlyphSlot}
Pure extension of \delcode that uses a “bit-packed” single number argument. Can also be used to
extract the bit-packed mathcode number of the Charslot if no assignment is given.
\XeTeXdelimiter{MathType} {Fam} {GlyphSlot}
Typesets the delimiter in the G1yphSIot in the family specified of either MathType 4 (opening) or 5
(closing).
39

xetex-general.tex,v: 2.02 2009/06/15

XFTEX: TEX MEETS OPENTYPE AND UNICODE

o~

OpenType Layout features found in Arial Unicode MS:

script = 'arab'
language = ' FAR '
features = 'isol' 'init' 'medi' 'fina' 'liga’' 'isol' 'fina' 'locl’

language = 'URD '
features = 'isol' 'init' 'medi' 'fina' 'liga' 'isol' 'init' 'medi' 'fina’
'locl!

language = <default>
features = 'isol' 'init' 'medi' 'fina' 'liga’ 'mark’

script = 'deva'
language = <default>
features = 'nukt' 'akhn' 'rphf' 'blwf' 'half' 'vatu' 'pres' 'abvs' 'blws'
'psts' 'haln' 'abvm' 'blwm' 'dist’

script = 'gujr!'
language = <default>
features = 'nukt' 'akhn' 'rphf' 'blwf' 'half' 'vatu' 'pres' 'abvs' 'blws'
'psts' 'haln' 'abvm' 'blwm' 'dist’

script = 'guru'
language = <default>
features = 'nukt' 'blwf' 'half' 'pstf' 'blws' 'abvs' 'abvm' 'blwm'

script = "hani'
language = ' JAN '
features = 'vert"'

language = 'KOR '
features = 'locl' 'vert'

language = ' ZHS '
features = 'locl' 'vert'

language = ' ZHT '
features = 'locl' 'vert'

language = <default>
features = 'salt' 'trad' 'smpl' 'vert'

script = 'kana'
language = ' JAN '
features = 'vert'

language = <default>
features = 'vert'

script = 'knda'
language = <default>
features = 'akhn' 'rphf' 'blwf' 'half' 'blws' 'abvs' 'psts' 'haln' 'dist'
'dist!

script = "taml"'
language = <default>
features = 'akhn' 'half' 'abvs' 'psts' 'haln’

OpenType Layout features found in Minion Pro:

script = 'cyrl!’
language = <default>
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist’
'"lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

script = 'grek!’
language = <default>
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

script='latn'
language = 'AZE '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist’
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’'
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = ' CRT '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’'
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = 'DEU '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp' 'ssO01l'
'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = 'MOL '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'locl' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf’
'ss01' 'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = 'ROM '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'locl' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf'
'ss01' 'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size’

language = 'SRB '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = ' TRK '
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp'
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

language = <default>
features = 'aalt' 'c2sc' 'case' 'dlig' 'dnom' 'fina' 'frac' 'hist'
'lnum' 'numr' 'onum' 'ordn' 'ornm' 'pnum' 'salt' 'sinf' 'smcp’
'ss02' 'sups' 'tnum' 'zero' 'cpsp' 'kern' 'size'

Figure 2.4: List of features for the scripts and languages supported by the Microsoft Arial and Adobe Minion fonts

'liga’
'ssO1!

'liga’
'ss01’

'liga’
'ss01’

'liga’
'ss01'

'lnum’'
'ss02"

'liga’
'smcp!

'liga’
'smep!

'liga’
'ss01’

'liga’
'ss01’'

'liga’
'ssO1!

40

2009/06/15

xetex—general.tex,v: 2.02

2.3 Supplementary commands introduced by X3IgX

\XeTeXradical{Fam}{GlyphSlot}

Typesets the radical in the glyph slot in the family specified.

2.3.5.1 Character classes

The idea behind character classes is to define a boundary where tokens can be added to the input stream
without explicit markup. It is primarily intended for automatic alphabet/language font switching.

\XeTeXinterchartokenstate

Counter. If positive, enables the character classes functionality.

\XeTeXcharclass{CharSlot} [=]{ClassNumber}

Assigns a class corresponding to ClassNumber (range 0-255) to a CharSlot. Most characters are
class 0 by default. Class 1 is for CJK ideographs, classes 2 and 3 are CJK punctuation. Special case class
256 is ignored; useful for diacritics.

\XeTeXinterchartoks{ClassNuml}{ClassNum2} [=]{token list}

Defines tokens to be inserted at the interface between ClassNumil and ClassNum?2 (in that order).

Exa. .
2-3-7 a[[&]a' \XeTeXinterchartokenstate = 1

\XeTeXcharclass “\a 7

\XeTeXcharclass "\A 8
\XeTeXinterchartoks 7 8 = {[\itshape}
\XeTeXinterchartoks 8 7 = {\upshape]}

\Large ala

2.3.6 Encodings, linebreaking, etc.

\XeTeXversion \XeTeXrevision

Expand to a number corresponding to the X§TEX version, and to a string corresponding to the XgIEX
revision number, respectively.

Exa.

2-3-8 The XHTEX version is: 0.997 \usepackage {xltxtra}
The \XeTeX\ version is: \the\XeTeXversion\XeTeXrevision

\XeTeXinputencoding{CharsetName}

Defines the input encoding of the following text.

\XeTeXdefaultencoding{CharsetName}

Defines the input encoding of subsequent files to be read.

\XeTeXdashbreakstate{Integer}

Specify whether line breaks after en- and em-dashes are allowed. Off, 0, by default.

41

xetex-general.tex,v: 2.02 2009/06/15

WAl XTeX: TEX MEETS OPENTYPE AND UNICODE

\XeTeXlinebreaklocale{LocaleID}

Defines how to break lines for multilingual text. For instance, to break Chinese text, where the charac-
ters are not separated by spaces, one can use the following (see also Example 2-4-7):

\XeTeXlinebreaklocale "zh"

\XeTeXlinebreakskip{Glue}

Inter-character linebreak stretch.

\XeTeXlinebreakpenalty{Integer}

Inter-character linebreak penalty.

\XeTeXupwardsmode{ Integer}

If greater than zero, successive lines of text (and rules, boxes, etc.) will be stacked upwards instead of
downwards.

2.3.7 Graphics and pdfTgX-related commands
This description is incomplete.

\XeTeXpicfile{Filename} {Options}

Insert an image.

\XeTeXpdffile{Filename} {Options}

Insert (pages of) a PDFE. A simple example of how to include a one-page PDF file follows.

\XeTeXpdffile "myfile.pdf"

\pdfpageheight{Dimension}

The height of the PDF page.

\pdfpagewidth{Dimension}

The width of the PDF page.

\pdfsavepos

Saves the current location of the page in the typesetting stream.

\pdflastxpos

Retrieves the horizontal position saved by the above.

\pdflastypos

Retrieves the vertical position saved by the above.

42

xetex-general.tex,v: 2.02 2009/06/15

24 fontspec

2.4 fontspec

As explained previously, Jonathan Kew’s X4IEX lets you easily use all OpenType (and TrueType) fonts
available on your computer system with TgX without having to create a whole series of . tfm, . v£, etc.
files. Nevertheless XqTEX’s \ font command still has a somewhat cumbersome syntax. Therefore, to
allow the use of commands more in line with BIEX’s NFSS syntax Will Robertson has developed his
fontspec package. It offers a simple way to select font families in BIEX for arbitrary fonts. In particular it
lets you fully control the selection of advanced font features that are available in OpenType or TrueType
fonts.

2.4.1 Usage
For basic use, no package options are required:

\usepackage{fontspec}% font selecting commands
\usepackage{xunicode}% unicode character macros

\usepackage{xltxtra} % a few fixes and extras
Ross Moore’s xunicode package is highly recommended, as it provides access BTEX’s various methods
for accessing extra characters and accents (for example, \ %, \$, \textbullet, \"u, and so on), plus
many more unicode characters.

Will Robertson’s xItxtra package, which loads the fontspecxunicode packages, adds a couple of gen-
eral improvements to BIEX under XgIEX. It also provides the \XeTeX macro to typeset the \XeTeX
logo by loading the metalogo package.

It is important to note that the babel package is not really supported. Many languages, such as
Vietnamese, Greek, and Hebrew, might not work correctly. You might have more chance with Cyrillic
and Latin-based languages, however—fontspec ensures at least that fonts should load correctly, but
hyphenation and other matters are not guaranteed.

fontspec has a list of options:

cm-default The Latin Modern fonts are not loaded;
no-math The maths fonts are not changed;
no-config the configuration file fontspec.cfg is not loaded;

quiet fontspec’s warnings will only be written in the log file and not on the console.

2.4.2 Latin Modern defaults

fontspec defines a new EIgX font encoding to allow the Latin Modern fonts (which are Unicode-
encoded) to be used by default. Indeed, it does not really make sense to have the legacy Computer
Modern fonts in the Unicode-enabled XgTEX. Note that fontspec also requires the euenc package to be
installed.

The package option ([cm-default]) instructs fontinst to ignore the Latin Modern fonts and use
TgX’s standard Computer Modern fonts instead. This might be useful on a system where the Latin
Modern fonts are not installed.

2.4.3 Maths ‘fiddling’
By default, fontspec adjusts BIEX’s default maths setup in order to maintain the correct Computer Mod-
ern symbols when the roman font changes. However, it will attempt to avoid doing this if another maths
font package is loaded (such as mathpazo or Will’s upcoming unicode-math package).

If you find that it is not correctly changing the maths font you should specify the [no-math]
package option to suppress its maths font component.

43

xetex-general.tex,v: 2.02 2009/06/15

2

XFIgX: TEX MEETS OPENTYPE AND UNICODE

You can customise any part of the fontspec interface, e.g., selecting features or scripts, by creating
afile fontspec. cfg, which is automatically loaded by X§TEX if it is found. The package option [no-
config] suppresses loading this file.

Since the fontspec package is quite verbose with its warning messages, an “experienced” user, who
knows what she is doing, can specify the [quiet] package option, which directs all warning messages
to the transcript (. 1og) file only.

2.4.4 Afirst overview

fontspec is a quite complex package since it has to handle a lot of font features. A basic preamble set-up
is shown below, to simply select some default document fonts. See the file fontspec-example.tex
for a more detailed example.

\usepackage{fontspec}
\defaultfontfeatures{Scale=MatchLowercase}
\setmainfont [Mapping=tex-text] {Minion Pro}
\setsansfont [Mapping=tex-text] {Myriad Pro}
\setmonofont{Courier Std}

2.4.5 Font selection

\fontspec[FontFeatures] { Fontname}

This is the basic command of the fontspec package. It lets you select Fontname from a BIgX family. The
optional argument FontFeatures isa comma-separated list of features (see Section 1.4.2 on page 11).
As our first example, look how easy it is to select the Minion Pro typeface with the fontspec package:

h&yﬁrstﬁnﬁspecexanqﬂe. \usepackage{fontspec, xltxtra}

AJyjﬂxtjbnmpecexanqﬂe. \providecommand\MyText

MY FIRST FONTSPEC EXAMPLE. {My first fontspec example.\\}

MY FIRST FONTSPEC EXAMPLE. \fontspec{Minion Pro} \MyText

My first fontspec example. {\itshape \MyText}

My first fontspec example. {\scshape \MyText)

MY FIRST FONTSPEC EXAMPLE. (\scshapelitshape \MyText}

\bfseries \MyText

MY FIRST FONTSPEC EXAMPLE. {\itshape \MyText)

{\scshape \MyText}

{\itshape\scshape \MyText }

The fontspec package takes care automatically of the necessary font definitions for those shapes as
shown above. Furthermore, it is not necessary to install the font for X§IgX specifically: every font that
is installed in the operating system may be accessed.

44

xetex-general.tex,v: 2.02 2009/06/15

Exa.
2-4-1

24 fontspec

2.4.6 Default font families

The \setmainfont, \setsansfont, and \setmonofont commands are used to select the default
font families for the entire document. They take the same arguments as \ fontspec, for instance:

22 Famous quick and jumping brown foxes. \usepackage{fontspec, xltxtra}
Famous quick and jumping brown foxes. \providecommand\MyText
Famous quick and jumping brown foxes. {Famous quick and jumping brown foxes.}
\setmainfont{Adobe Garamond Pro}
\setsansfont[Scale=0.86] {Cronos Pro}
\setmonofont [Scale=0.8] {News Gothic Std}
\rmfamily\MyText\par
\sffamily\MyText\par
\ttfamily\MyText
Here, the scales of the fonts have been chosen to equalise their lowercase letter heights. The Scale
font feature also allows for automatic scaling, as will be explained later.
A more complex example which shows the italic and bold variants follows.
Exa.
2-4-3 Famous quick and jumping brown foxes. \usepackage { fontspec, xltxtra}
Famous quick and jumping brown foxes. \providecommand\MyText
Famous quick and jumping brown foxes. {Famous quick and jumping brown foxes.}
Famous quic/e andjumping bmwnfoxe& \setmainfont {Adobe Garamond Pro}
Famous quick and jumping brown foxes. \setsansfont[Scale=0.86]{Cronos Pro}
) . , \setmonofont [Scale=0.8] {News Gothic Std}
Famous quick and jumping brown foxes.)
. . ; \rmfamily\MyText\par
Famous quick and jumping brown foxes. {\itshape\MyText}\par
Famous quick and jumping brown foxes. (\bfseries\MyText}\par
Famous quick and jumping brown foxes. {(\itshape\bfseries\MyText}\par
Famous quick and jumping brown foxes. \sffamily\MyText\par
Famous quick and jumping brown foxes. {\itshape\MyText}\par
Famous quick and jumping brown foxes. {\bfseries\MyText}\par
{\itshape\bfseries\MyText}\par
\ttfamily\MyText\par
{\itshape\MyText}\par
{\bfseries\MyText}\par
{\itshape\bfseries\MyText}\par
Since fontspec has to parse and process its arguments at each call it can be more efficient to cre-
ate a font instance for a given set of features using the \newfontfamily command, which creates
commands that can be used like \rmfamily, \sffamily, etc.
Exa.
2-4-4 The perfect match is hard to find. \usepackage { fontspec}

LOGOFONT \setmainfont{Georgia}
\newfontfamily\lc[Scale=MatchLowercase] {Verdana}
The perfect match {\lc is hard to find.}\\
\newfontfamily\uc[Scale=MatchUppercase] {Arial}
LOGON\Nuc FONT

For cases where only one specific font face is needed, without accompanying italic or bold variants,
the \newfont face command is available. In particular, this command can be useful when a font is of
a fancy nature, e.g., it contains script or swash features that are only available in an italic variant, and

45

xetex-general.tex,v: 2.02 2009/06/15

X4IEX: TEX MEETS OPENTYPE AND UNICODE

not in upright, etc.

Ctianactens [¥S29@!7] of a Bructy Nature. \usepackage{fontspec} inas
\newfontface\Brush{Brush Script Std Medium}
\Brush Characters [*349Q@!?] of a Brushy Nature.
Automatic selection of bold, italic, and bold italic for certain fonts might not be adequate, in par-
ticular if the given font does not exist in bold or italic variants. Nevertheless, in such cases the user
might want to choose matching shapes from a completely different font. In other instances a font can
have a range of bold and italic fonts to choose between. The BoldFont and ItalicFont features are
provided for these situations. If only one of these is used, the bold italic font is requested as the default
from the new font.
Helvetica Neue Ultra Light \usepackage{fontspec} i
Helvetica Neue Ultra Light (italic) \fontspec[BoldFont={Helvetica Neue 55 Roman}]
Helvetica Neue Roman (b0|d) {Helvetica Neue 25 Ultra Light}
Helvetica Neue Roman (bold italic) Helvetica Neue Ultra Light N\
{\itshape Helvetica Neue Ultra Light (italic)} \\
{\bfseries Helvetica Neue Roman (bold)} N\
{\bfseries\itshape Helvetica Neue Roman (bold italic) }\\
In this example we want to use the font Helvetica Neue 25 Ultra Light (its full name has to be spec-
ified to the ICU processor), which has no bold variant, hence we tell fontspec to use Helvetica Neue 55
Roman when constructing the bold variants. We can also specify an explicit bold italic variant with the
BoldItalicFont feature.
\usepackage{fontspec, xltxtra, graphicx}
Fontspec: Chinese, Mandarin \XeTeXlinebreaklocale "zh" % allow linebreaks
(Simplified): \XeTeXlinebreakskip = Opt plus 1pt minus 0.1pt
ANAETEH , EBE =R \setmainfont[Mapping=tex-textl{Minion Pro}
o= 2 A= \providecommand{\ZHS}{%
X4TEX: Chinese, Mandarin AANEMER, T2/ E—3FE. 3
(Traditional): \providecommand{\ZHT}{%
ANEMER - SRR ANEMER, TEEMEN E—2F%. 3
K E—EE% - %%%% Use font MingLiU with 'vert' feature
) \parbox{45mmjf{\raggedright
And now the same vertically F(I;)ntspec: Chinese, l\g/[§ndargin (Simplified):\\
A FA \fontspec{MingLiU} \ZHS \\
A EA \rmfamily
— 4% — 4% \XeTeX: Chinese, Mandarin (Traditional):\\
(ﬂ:%] {% i %%%% Define font in plain xetex
;E; H ;}5 H \font\body="MingLiU" \body \ZHT }\\[3mm]
T H T H %%%% Rotate glyphs
ﬁ Z{{ \rmfamily And now the same vertically\\
2% 5 \fontspec[Vertical=RotatedGlyphs]{MingLiU}
e & \quad\rotatebox{-90}{\ parbox{45mmj}{\ZHS}}
il il \font\body="MingLiU:vertical" \body
N T \quad\rotatebox{-90}{\ parbox{45mm}{\ZHT}} o
46

xetex-general.tex,v: 2.02 2009/06/15

2.5 XjgX and other engines

2.5 XgigX and other engines

The two key features X§IEX offers are (a) native support for Unicode, including complex non-Latin
scripts, and (b) easy use of modern font formats (TrueType and OpenType).

Earlier, Unicode support was offered by Omega (and then Aleph); more recently, this has been
incorporated into LuaTgX, which also has support for direct use of OpenType fonts. Nevertheless, ac-
cording to Jonathan Kew' there are major differences in the approach taken by the different projects,
in particular,

XATEX values LuaTgX (and predecessors)
ease of setup and use ultimate flexibility
uses available libraries control every aspect of the implementation
wherever feasible do “the right thing” automati- provide authors or macro writers with low-level
cally tools

!Presentation at BachoTEX2008 (http://www.gust.org.pl/bachotex/2008/presentations/

XeTeX-BachoTeX2008-pres.pdf).

47

xetex-general.tex,v: 2.02 2009/06/15

CHAPTER 3

Handling all those scripts

3.1 WHEING SYStEMS . . o o o e e 49
3.2 Bidirectional typesetting e 55
3.3 Languages using the Arabicalphabet. 61
3.4 Typesetting Chinese 79

3.5 Examples of the use of Unicode

As shown in Figures 2.2 and 2.3 on page 20, the world has many scripts. In this chapter we first present
a brief overview of the world’s writing systems. Problems related to bidirectional typesetting and their
solution are described in Section 3.2. Application packages for Arabic and Chinese typesetting are the
subject of Sections 3.3.2 and 3.4, respectively. Finally, in Section 3.5 we give hints about where to find
information on Unicode fonts and freely available texts in UTF-8.

3.1 Writing systems

It is accepted that every human community possesses language, yet the development and adoption of
writing systems occurred only quite recently in the history of mankind. Moreover, writing systems,
once they are introduced, generally change rather more slowly than the spoken variant they represent,
and they thus often preserve features and expressions which are no longer current in the spoken lan-
guage. Nevertheless, the great benefit of writing systems is that they maintain a persistent record of
information expressed in a language, which can be retrieved independently of the initial act of formu-
lation.
Writing systems require:

e aset of defined base elements or symbols, individually termed characters or graphemes, and col-
lectively called a script;

e aset of rules and conventions understood and shared by a community, which arbitrarily assign
meaning to the base elements, their ordering, and relations to one another;

e alanguage (generally a spoken language) whose constructions are represented and able to be re-
called by the interpretation of these elements and rules;

e some physical means of distinctly representing the symbols by application to a permanent or semi-
permanent medium, so that they may be interpreted (usually visually, but tactile systems have also

3

HANDLING ALL THOSE SCRIPTS

50

been devised).

3.1.1 Basic terminology

The study of writing systems has developed along partially independent lines in the examination of
individual scripts, and as such the terminology employed differs somewhat from field to field [6].

The generic term text may be used to refer to an individual product of a writing system. The act
of composing a text may be referred to as writing, and the act of interpreting the text as reading. In
the study of writing systems, orthography refers to the method and rules of observed writing structure
(literal meaning, “correct writing”), and in particular for alphabetic systems, includes the concept of
spelling.

Graphemes are the atomic units of a given writing system, i.e., the minimally significant elements
which taken together comprise the set of “building blocks” out of which texts of a given writing system
may be constructed, along with rules of correspondence and use. For example, for standard contem-
porary English graphemes include the uppercase and lowercase forms of the twenty-six letters of the
Latin alphabet (corresponding to various phonemes the atoms of the spoken language), marks of punc-
tuation (mostly non-phonemic), and a few other symbols such as those for numerals (logograms for
numbers).

A given grapheme may be represented in a wide variety of ways, each variation being visually dis-
tinct in some regard, but all are interpreted as representing the “same” grapheme. These individual
variations are known as allographs of a grapheme, e.g., the lowercase letter “a” has different allographs
depending on the medium used, the writing instrument, the stylistic choice of the writer, and an indi-
vidual’s handwriting.

The terms glyph, sign, and character are sometimes used to refer to a grapheme. The glyphs of most
writing systems are made up of lines (or strokes) and are therefore called linear, but there are glyphs in
non-linear writing systems made up of other types of marks, such as Cuneiform and Braille.

Writing systems are conceptual systems, as are the languages to which they refer. Writing systems
may be regarded as complete according to the extent to which they are able to represent all that may be
expressed in the spoken language.

3.1.2 History of writing systems
http://en.wikipedia.org/wiki/History of writing

Writing systems were preceded by proto-writing, systems of ideographic (representing an idea) or
early mnemonic (serving as a memory aid) symbols, e.g., the Jiahu Script (ca 6600 BCE, tortoise shells,
China), the Vinca script (ca. 4500 BCE, Tértaria tablets, Romania), and the early Indus Harappan script
(ca. 3500 BC, N-W India).

The invention of the first writing systems is roughly contemporary with the beginning of the Early
Bronze Age in the late Neolithic (around 3000 BCE), e.g., the Sumerian archaic cuneiform script and
the Egyptian hieroglyphs, generally considered the earliest writing systems, both emerge out of their
ancestral proto-literate symbol systems as the first coherent texts from about 2600 BCE. Similarly, the
Chinese script is considered to have developed independently of the Middle Eastern scripts mentioned
previously, around 1600 BCE.

It is generally accepted that the first true alphabetic writing appeared in the Middle Bronze Age
(2000-1500 BCE), as a representation of language developed by Semitic workers in Central Egypt.*
Over the next five centuries it spread north, and all subsequent alphabets around the world have either
descended from it, many via the Phoenician alphabet, or were directly inspired by its design.

The first purely alphabetic script is thought to have been developed around 2000 BCE for Semitic
workers in central Egypt.

'“History of the alphabet”, see http://en.wikipedia.org/wiki/History of the alphabet.

xetex-languages.tex,v: 2.02 2009/06/15

3.1 Writing systems

NNSPBPSoCSe
T ki) I
KpNAANIEeCKUI aA(l)aBI/[T
SIALY-A> -
s (Cysiic)
(Georgan)
Tl Fagoa) y NENF (atakans)
EAR 6 cAGGBTo o Oanchu) @ el o
«m\»é"' Zughpf X 3 N%
ecWYe Br i b i A s
(Cherokee) "2y nv:azn o e 5395 5‘(%
+ILT1Y (e o T ey 3 T
d P Vi - (1P
S T SR ST g 601204
iz ~7‘f AR Al SN o O, @ Xl o
Rl | g] 590 (Lae) S
spozuze Beuths T 5
9 e (Ol Cemet) 88lwme) &7 pacancisy
&Y i) LB EYSTS A
Latin s ® (Eiop) 5 4
Cyrillic L '3\,“ Spsr z
wa) tndanes . Y o
@ Hangeu (featural) . 2 otz
Latin alphabet
@ Oteraiphavets 2
(Carakan)
Arabic
Other abjads
Devanagari The unlabeled scripts of India are:
) (west) Gurmukhi, Gujarati, Kannada, Malayalam,
Other abugidas and (east) Tamil, Telugu, Oriya, Bengali, Burmese.
@ siabories

Logographies

source: http://en.wikipedia.org/wiki/Image:WritingSystemsoftheWorldd.png

Figure 3.1: Writing systems used in the world today

3.1.3 Types of writing systems
Figure 3.1 shows the writing systems and their types as they are used in the world today.

The oldest-known forms of writing were mainly of the logographic type, i.e., they used a single
grapheme for representing a morpheme, the atomic unit of meaning in a language.' Such forms com-
bined pictographic (a symbol representing a concept, object, activity, place, event, etc. by a drawing) and
ideographic (a symbol representing an idea) elements.

Most writing systems can be broadly divided into three categories, namely logographic, syllabic, and
alphabetic, although a given writing system can contain two, or all three, in which case one often talks
of a complex system.

Various types of writing systems exist.

e alogographic symbol represents a morpheme (e.g., Chinese characters);

e asyllabic type symbol represents a syllable (e.g., Japanese kana);

e an alphabetic type symbol represents a phoneme: consonant or vowel (e.g., Latin alphabet);
e an abugida type symbol represents a phoneme: consonant+vowel (e.g., Indian Devanagari);

e an abjad type symbol represents a phoneme: consonant (e.g., Arabic alphabet);

a featural type symbol represents a phonetic feature (e.g., Korean hangul).

3.1.3.1 Logographic writing systems

Alogogram (seehttp://en.wikipedia.org/wiki/Logogram) isa single written character which
represents a complete grammatical word or morpheme. Thus, many logograms are required to write all
the words of language. The vast array of logograms and the memorization of what they mean are the
major disadvantage of the logographic systems over alphabetic systems. On the other hand, since the
meaning is inherent to the symbol, the same logographic system can theoretically be used to represent
different languages. In practice, this is only true for closely related languages, like the various dialects

'See http://en.wikipedia.org/wiki/Morpheme.

xetex-languages.tex,v: 2.02 2009/06/15

51

3

HANDLING ALL THOSE SCRIPTS

52

of the Chinese language. Speakers of dialects of the various provinces of China will understand the
characters of given Chinese text but pronounce them in quite different, and sometimes mutually un-
intelligle, ways. Furthermore, Japanese uses Chinese logograms extensively in its writing systems, with
most of the symbols carrying the same or similar meanings. However, the semantics, and especially
the grammar, are different enough that a long Chinese text is not readily understandable to a Japanese
reader without any knowledge of basic Chinese grammar, though short and concise phrases such as
those on signs and newspaper headlines are much easier to comprehend.

While most languages do not use wholly logographic writing systems many languages use some
logograms. A good example of modern western logograms are the Hindu- Arabic numerals — everyone

»

who uses those symbols understands what “1” means, whether the symbol is pronounced as “one”, “un’,
“eins’, “yi’, “odin’, “ichi’, or “ehad”. Other western logograms include the ampersand “&” (used for and),
the “@” (with its many semantic uses), the “%” (as percent), and many currency symbols ($, ¢, £, ¥, €,
etc.).

Logograms are sometimes called ideograms, symbols which graphically represent abstract ideas,
but this use is somewhat inappropriate for Chinese characters since they often consist of seman-
tic—phonetic compounds, i.e., they include an element that represents the meaning and another that
represents the pronunciation.

Today the only surviving important modern logographic writing system is the Chinese one, whose
characters are or were used, with varying degrees of modification, in Chinese, Japanese, Korean, Viet-
namese, and other east Asian languages. Ancient Egyptian hieroglyphics and the Mayan writing system
are also systems with certain logographic features, although they have marked phonetic features as well,
and they are no longer in current use.

3.1.3.2 Syllabic writing systems

A syllabary (see also http://en.wikipedia.org/wiki/Syllabary) is a set of written symbols
that represent (or approximate) syllables, which make up words. A symbol in a syllabary typically rep-
resents a consonant sound followed by a vowel sound, or just a vowel alone. In a true syllabary there is
no systematic graphic similarity between phonetically related characters.!

Syllabaries are best suited to languages with relatively simple syllable structure, such as Japanese.
where the number of possible syllables is no more than about fifty to sixty. In contrast, English would
need many thousands to represent all its possible syllable structures. The Japanese language uses Chi-
nese Kanji, as well as two syllabaries together called kana, namely hiragana and katakana (developed
around 700 CE). They are mainly used to write some native words and grammatical elements, as
well as foreign words (see Japanese writing system http://en.wikipedia.org/wiki/Japanese
writing system)

Languages that use syllabic writing include Mycenaean Greek (Linear B), the Native American
language Cherokee, the African language Vai, the English-based creole language Ndyuka (the Afaka
script), Yi language in China, the N Shu syllabary for Yao people, China, and the ancient Filipino
script Alibata. The Chinese, Cuneiform, and Maya scripts are largely syllabic in nature, although based
on logograms. They are therefore sometimes referred to as logosyllabic.

3.1.3.3 Alphabetic writing systems

An alphabet (see http://en.wikipedia.org/wiki/Alphabet) is a small set of letters — basic
written symbols — each of which roughly represents a phoneme of a spoken language (as it is currently
pronounced or as it was pronounced in the past).

'Some syllabaries exibit a graphic similarity for the vowels. For instance in hiragana, the characters for “ke”, “ka”, and “ko”
show no graphical similarity to indicate their common “k” phonetic element. This is in contrast to abugida, where each grapheme
typically represents a syllable but where characters representing related sounds are similar graphically, i.e., a common consonantal
base is annotated in a more or less consistent manner to represent the vowel in the syllable

xetex-languages.tex,v: 2.02 2009/06/15

3.1 Writing systems

In a perfectly phonemic alphabet, the phonemes and letters would correspond perfectly in two
directions: a writer could predict the spelling of a word given its pronunciation, and a speaker could
predict the pronunciation of a word given its spelling. Examples of languages with such an alphabet
are Serbocroatian or Finnish, and these have much lower barriers to literacy than languages such as
English, which has a very complex and irregular spelling system, which has hardly evolved since many
centuries, whereas the spoken language has considerably. Moreover, since writing systems have been
borrowed for languages they were not designed for, the degree to which letters of an alphabet corre-
spond to phonemes of a language varies greatly from one language to another and even within a single
language. Although possible, using a truly phonetic alphabet (e.g., the International Phonetic Alpha-
bet (IPA), see http://en.wikipedia.org/wiki/International Phonetic Alphabet) for
a natural spoken language would be very cumbersome, as it would have to have a huge variety of pho-
netic variation.

3.1.3.4 Abjads

The first type of alphabet that was developed was the abjad, an alphabetic writing system which uses one
symbol per consonant, vowels usually not being marked (see http://en.wikipedia.org/wiki/
Abjad).

Almost all abjad scripts are used for Semitic languages and the related Berber languages which
have a morphemic structure which makes the denotation of vowels redundant in most cases.

Some abjads (e.g., Arabic and Hebrew) have markings for vowels as well (in this case they are called
“impure” abjads), although they most only use them in special contexts, such as for teaching. On the
other hand, when an abjad script was adapted to a non-Semitic language the derived abjad has been
extended with vowel symbols to become full alphabets, the most famous case being the derivation of
the Greek alphabet from the Phoenician abjad.

3.1.3.5 Abugida

An abugida (see http://en.wikipedia.org/wiki/Abugida) is an alphabetic writing system in
which each letter (basic character) represents a consonant accompanied by a specific vowel; other vow-
els are indicated by modification of the consonant sign, either by means of diacritics or through a
change in the form of the consonant. In some abugidas, the absence of a vowel is indicated overtly.
About half the writing systems in the world, including the various scripts used for most Indo-Aryan
languages, are abugidas.

For instance, in an abugida there is no sign for “k’, but instead one for “ka’, the “a” being inher-
ent vowel. The phoneme “ke” is written by modifying the “ka” sign in a way that is consistent with
how one would modify “la” to get “le”. In many abugidas the modification is the addition of a vowel
sign, but other possibilities are imaginable (and used), such as rotation of the basic sign, addition of
diacritical marks, and so on (an example can be seen for three Indic scripts in Figure 3.1. More in-
formation on Indic languages can be found at the Web page http://www.unicode.org/notes/
tnl0/indic-overview.pdf).

3.1.3.6 Featural writing systems

A featural script represents finer detail than an alphabet. Here symbols do not represent whole
phonemes, but rather the elements (features) that make up the phonemes, such as voicing or its place
of articulation. The only prominent example is Korean Hangul, where the featural symbols are com-
bined into alphabetic letters, and these letters are in turn joined into syllabic blocks, so that the system
combines three levels of phonological representation.

53

xetex-languages.tex,v: 2.02 2009/06/15

3 HANDLING ALL THOSE SCRIPTS

54

Table 3.1: Indic consonant-vowel combinations in various Indic abugidas

position | syllable | pronunciation | derived from | script

above E /ket/
below | & /ku/ & /k(a)/ Devanagari

left fh /ki/
right i /ko:/
around | Gl&er | /kau/ & /ka/ Tamil
within | E /ki/ 2c /ka/ Kannada

3.1.4 Language Resources

http://www.geonames.de/

This website provides a treasure of data in many languages and scripts. It provides tables with the
countries of the world in their own languages and scripts, with official names, capitals, flags, coats of
arms, administrative divisions, national anthems, and translations of the countries and capitals. Also
available are translations of the names of the days, months, planets, geographical names, such as rivers,
mountains, etc., chemical elements, religions, numbers, and an extended glossary with several hundred
words translated into languages classified per family.

http://www.lexilogos.com/

Information (in French) on many languages, with examples of phrases.

3.1.5 Freely available Unicode encoded fonts

The site “Wazu japan’s Gallery of Unicode Fonts” (http://www.wazu.jp/) was created by David
McCreedy and Mimi Weiss. Currently the site is maintained by Wazu Japan. The site displays sam-
ples of available Unicode fonts ordered by writing system (roughly speaking Unicode ranges). Luc De-
vroye’s web site (http://cg.scs.carleton.ca/~luc/fonts.html) also has a long list of free
and shareware fonts classified by language.

3.1.6 Directionality

Different scripts are written in different directions. The early alphabet could be written in any direc-
tion: either horizontal (left-to-right or right-to-left) or vertical (up or down). It could also be written
boustrophedon: starting horizontally in one direction, then turning at the end of the line and reversing
direction. Egyptian hieroglyph is one such script, where the beginning of a line written horizontally
was to be indicated by the direction in which animal and human ideograms are looking.

The Greek alphabet and its successors settled on a left-to-right pattern, from the top to the bot-
tom of the page. Other scripts, such as Arabic and Hebrew, came to be written right-to-left. Scripts
that incorporate Chinese characters have traditionally been written vertically (top-to-bottom), from
the right to the left of the page, but nowadays are frequently written left-to-right, top-to-bottom, due
to Western influences, a growing need to accommodate terms in the Roman alphabet, and technical
limitations in popular electronic document formats. The Mongolian alphabet is unique in being the
only script written top-to-bottom, left-to-right; this direction originated from an ancestral Semitic di-

xetex-languages.tex,v: 2.02 2009/06/15

3.2 Bidirectional typesetting

rection by rotating the page 90° counter-clockwise to conform to the appearance of Chinese writing.
Scripts with lines written away from the writer, from bottom to top, also exist, such as several used in
the Philippines and Indonesia.

3.1.7 Writing systems on computers

Different ISO/IEC standards are defined to deal with each individual writing systems to implement
them in computers (or in electronic form). Today most of those standards are re-defined in a better
collective standard, the ISO 10646, also known as Unicode. In Unicode, each character, in every lan-
guage’s writing system, is in principle given a unique identification number, known as its code point.
The computer’s software uses the code point to look up the appropriate character in the font file, so the
characters can be displayed on the page or screen.

3.2 Bidirectional typesetting

Vafa Khalighi’s (vafa@users.berlios.de) bidi package provides a convenient interface for type-
setting bidirectional texts with XgBTEX".

This section is intended for people who use bidi directly, people who use other packages that de-
pend on bidi, and developers of the packages that depend on bidi.

bidi modifies lots of KTEX classes and packages so that you can use them for your bidirectional
typesetting. bidi currently supports the standard BTEX kernel, the amsart, amsbook, article, bidibeamer
(modified version of the beamer class, bidimemoir (modified version of the memoir class), bidimoderncv
(modified version of the moderncv class), bidipresentation, book, bookest, extbook, rapport3, refrep,
report, scrartcl, scrbook, scrreprt classes, and the amsthm, array, booktabs, beamerthemebidiJLTree
(modified version of the beamerthemelLTree package), bidi2in1, bidibeamerbaseauxtemplates (mod-
ified version of beamerbaseauxtemplates package), bidibeamerbasetemplates (modified version of
the beamerbasetemplates package), cvthemebidicasual (modified version of cvthemecasual package),
cvthemebidiclassic (modified version of the cvthemeclassic package), dcolumn, draftwatermark, fancyhdr,
graphicx, hhline, listings, longtable, minitoc, multirow, pdfpages, pstricks, ragged2e, stabular, supertabular,
tabls, tabularx, tabulary, threeparttable, tikz, tocloft, tocstyle and wrapfig packages. Anything else is not
supported yet but this does not mean they will not work with bidi, please feel free to experiment using
other packages and classes with bidi but please note that you are on your own. In future versions of the
bidi package, more classes and packages will be supported.

3.2.1 Using The bidi Package

You can use the package by simply putting \usepackage {bidi} in the preamble of your document.
When using bidi the following should be noted.

1. The bidi package automatically loads the amsmath package so that you do not need to load it your-
self.

2. The bidi package should be the last package that you load in the preamble of your document. This
is because bidi modifies lots of commands defined in other ETEX packages so that they can be
used for bidirectional typesetting. If you do not load the bidi package as your last package, the bidi
definitions would be overwritten and consequently you would not get the result you expect.

'In fact, bidi can be used with any e-TgX-based engine, notably PDFBIEX.

55

xetex-languages.tex,v: 2.02 2009/06/15

3 HANDLING ALL THOSE SCRIPTS

3. There is an exception to the above statement, you should always load package xunicode after! bidi.
If you forget to follow this rule you will get an error message which looks like this:

! Package bidi Error: Oops! you have loaded package xunicode before
bidi package. Please load package xunicode after bidi package, and
then try to run xelatex on your document again.

See the bidi package documentation for explanation.

Type H <return> for immediate help.

1.4 \begin{document}

3.2.1.1 Package options

There are two options RTLdocument and rl1document which are essentially equivalent. They are in-
tended mainly for RTL typesetting with some LTR typesetting and automatically activate \ setRTL,
\RTLdblcol and \autofootnoterule which are explained later.

3.2.2 Basic Direction Switching

bidi provides some commands, environments for direction switching:

3.2.2.1 Commands for direction switching

\setRTL \setRL \unsetLTR
\setLTR \setLR \unsetRTL \unsetRL

The commands in the first row allows you to have RTL typesetting and the commands in the second
row allows you to have LTR typesetting.

Exa

tesepyt si hcihw hpargarap LTR a si sihT \usepackage {bidi} 321

.tfel ot thgir morf \setRTL
And this is an LTR paragraph which is type- This is a RTL paragraph which is
set from left to right. Note the blank line that typeset from right to left.
we put before changing the direction of type-

setting. \setLTR

And this is an LTR paragraph which

is typeset from left to right. Note the
blank line that we put before changing
the direction of typesetting.

"This is because amsmath should be loaded before the xunicode package and bidi already loads amsmath. Hopefully this will
change in future versions of the bidi package.

56

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-2-2

Exa.
3-2-3

3.2 Bidirectional typesetting

3.2.2.2 Environments for direction switching

\begin{RTL} ...\end{RTL}
\begin{LTR} ...\end{LTR}

The first environment allows you to have RTL typesetting and the second environment allows you to
have LTR typesetting.

tesepyt si hcihw hpargarap LTR na si sihT \usepackage {bidi}
.tfel ot thgir morf \begin{RTL}
This is an RTL paragraph which is

This is an LTR paragraph inside an RTL para- ,
typeset from right to left.

graph. \begin{LTR}
ecno edom LTR ni gnittesepyt era ew ereH This is an LTR paragraph inside
erom an RTL paragraph.
\end{LTR}

Here we are typesetting in
RTL mode once more.
\end {RTL}

3.2.3 Typesetting Short RTL and LTR texts

\RLE{..} \RL{..}
\LRE{..} \LR{..}

The commands in the first row allow you to typeset a short piece of text from right to left and the
commands in the second row allow you to typeset a short piece of text from left to right.

\usepackage{bidi}
\setRTL
This is an RTL paragraph and \LRE{these words} appeared LTR.

\setLTR
This is an LTR paragraph and \RL{these words sentence} appeared RTL.

.RTL deraeppa these words dna hpargarap LTR na si sihT
This is an LTR paragraph and ecnetnes sdrow eseht appeared RTL.

3.2.4 Multicolumn Typesetting
3.2.4.1 Two column typesetting

\RTLdblcol \LTRdblcol

\RTLdblcol allows you to have RTL two column typesetting and \LTRdblcol allows you to have
LTR two column typesetting as the options of the class file.

3.2.4.2 Multicolumn typesetting

For RTL multicolumn typesetting, you can use fmultico package which has the same syntax as multicol
package.

\usepackage{bidi, fmultico}
\setRTL
\begin{multicols} {3}

57

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

EETS was founded in 1864 by Frederick James Furnivall, with the help

of Richard Morris,

Walter Skeat, and others, to bring the mass of

unprinted Early English literature within the reach of students. It

was also intended to provide accurate texts from which the New (later

Oxford) English Dictionary could quote;

the ongoing work on the

revision of that Dictionary is still heavily dependent on the
as are the Middle English Dictionary and the

Society's editions,

Toronto Dictionary of 0ld English.

\end{multicols}

-vaeh llits si yranoitciD taht saw tI .stneduts fo hcaer eht 4681 ni dednuof saw STEE 3]%)2(?4
-icoS eht no tnedneped yli -ucca edivorp ot dednetni osla ,1llavinruF semal kcirederF yb
-diM eht era sa ,snoitide s’yte weN eht hcihw morf stxet etar -roM drahciR fo pleh eht htiw
eht dna yranoitciD hsilgnE eld -oitciD hsilgnE)drofxO retal(,srehto dna ,taekS retlaW ,sir
-nE dlO fo yranoitciD otnoroT -ogno eht ;etouq dluoc yran detnirpnu fo ssam eht gnirb ot
.hsilg fo noisiver eht no krow gni nihtiw erutaretil hsilgnE ylraE
You also can use vwcol package for RTL multicolumn typesetting.
\usepackage{bidi, vwcol}
\setRTL
\begin{vwcol} [widths={0.3,0.2,0.5},rule=2pt]
EETS was founded in 1864 by Frederick James Furnivall, with the help
of Richard Morris, Walter Skeat, and others, to bring the mass of
unprinted Early English literature within the reach of students. It
was also intended to provide accurate texts from which the New (later
Oxford) English Dictionary could quote; the ongoing work on the
revision of that Dictionary is still heavily dependent on the
Society's editions, as are the Middle English Dictionary and the
Toronto Dictionary of 0ld English.
\end{vwcol}
Exa.
hsilgnE)drofxO retal(weN eht hcihw morf -til hsilgnE ylraE ni dednuof saw STEE | 3-2-5

eht nihtiw erutare
.stneduts fo hcaer
-ni osla saw tI
edivorp ot dednet
stxet etarucca

no krow gniogno eht ;etouq dluoc yranoitciD
-vaeh llits si yranoitciD taht fo noisiver eht
sa ,snoitide s’yteicoS eht no tnedneped yli
eht dna yranoitciD hsilgnE elddiM eht era
.hsilgnE dlO fo yranoitciD otnoroT

semal kcirederF yb 4681
pleh eht htiw ,llavinruF
retlaW ,sirroM drahciR fo
gnirb ot ,srehto dna ,taekS
detnirpnu fo ssam eht

3.2.5 More peculiarities for RTL typesetting
3.2.5.1 Handling color

Due to XHIEX’s limitations in handling colors, you cannot use the color and xcolor packages for gener-
ating RTL color texts. Instead you should use the xecolour package.

58

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-2-6

3.2 Bidirectional typesetting

3.2.5.2 RTL cases

\rcases is defined in bidi for typesetting RTL cases.

nem
nemow

\usepackage{bidi}
\setRTL
\[\rcases{\text{men}\cr\text{women}}

} sgnieB snamuH

\text{Humans Beings}

\]

3.2.5.3 Footnotes

\footnote{..} \LTRfootnote{..} \RTLfootnote{..}
\setfootnoteRL \setfootnotelLR \unsetfootnoteRL

\footnote in RTL mode produces an RTL footnote while in LTR mode it produces an LTR foot-
note.

\LTRfootnote will always produce an LTR footnote, independent on the current mode.
\RTLfootnote will always produce an RTL footnote, independent on the current mode.

Specifying a \ set footnoteRL command anywhere will make \ footnote produce an RTL foot-
note.

Specifying either a \set footnoteLR or an \unsetfootnoteRL command anywhere will make
\footnote produce an LTR footnote.

The behavior of footnote rules can also be controlled.

\autofootnoterule \rightfootnoterule
\leftfootnoterule \textwidthfootnoterule

\rightfootnoterule will put footnote rule on the right-hand side.
\leftfootnoterule will put footnote rule on the left-hand side.
\textwidthfootnoterule will draw the footnote rule with a width equal to \textwidth.

\autofootnoterule will draw the footnote rule right or left aligned based on the direction of
the first footnote following the rule (i.e., put in the current page).

xetex-languages.tex,v: 2.02 2009/06/15

59

3 HANDLING ALL THOSE SCRIPTS

3.2.6 Tabular material in RTL mode

You can typeset any tabular material in RTL mode, as seen below.

Exa.
Cl11-C12 C13-Cl4 C15-C16 \usepackage {bidi} 327
C21 [C22 1 C23 1 C24 | C25 |1 C26 \providecommand\Mytable{%
C31 C32 | €33 [C34 | C35 | C36 \begin{tabular}{|llclrlrlc|l|}\hline
\multicolumn{2}{|1]|}{Cll--C12}
Cal-C44 C45C46 & \multicolumn{2}{c|}{Cl13--Cl1l4}
61C_51C 41C_31C 21C-11C & \multicolumn{2}{r|}{C1l5--C16}\\\hline
62C 1 52C | 42C | 32C | 22C | 12C C21 & C22 & C23 & C24 & C25 & C26\\
\cline{2-2}\cline{4-4}\cline{6-6}
63C | 53C | 43C | 33C | 23C | 13C C31 & C32 & C33 & C34 & C35 & C36\\
64C-54C | 44C-14C \cline{1l-1}\cline{3-3}\cline{5-5}

\multicolumn{4}{|1|}{C41--C44} &
\multicolumn{2}{|r|}{C45--C46}\\
\hline\hline

\end{tabular}}

\Mytable\\ [lex]

\setRTL

\Mytable

By comparing the top (typeset in LTR mode) and the bottom (typeset in RTL mode) tables it
is seen seen that in RTL mode the columns are indeed typeset from right to left, e.g., the leftmost
column becoming the rightmost, etc. This behavior includes the numbering of the columns, as used
in the \cline command, where in RTL mode, e.g., \cline{2-2} refers to the second rightmost
column. Note that the alignment indicators (1 and r) in the \begin{tabular} and \multicolumn
arguments play their usual role of aligning the material left and right adjusted, respectively. A more
complex example is the following.

\usepackage{bidi}

\newcommand{\rb}[1] {\raisebox{1l.5ex} [Omm] {#1}}
\setRTL

\begin{tabular}{|r|lclriclriclr]|}

\hline

& \multicolumn{2}{c|}{6.15--7.15 pm} & \multicolumn{2}{cl|}{7.20--8.20 pm}
& \multicolumn{2}{c|}{8.30--9.30 pm} \\ \cline{2-7}
&& Teacher && Teacher && Teacher \\ \cline{3-3}\cline{5-5}\cline{7-7}
\rb{Day} & \rb{Subj.} & Room & \rb{Subj.} & Room & \rb{Subj.} & Room\\
\hline\hline

&& Dr.~Smith && Ms.~Clark && Mr.~Mills\\
\cline{3-3}\cline{5-5}\cline{7-7}
\rb{Mon.} & \rb{UNIX} & Comp. Ctr & \rb{Fortran} & Hall A

& \rb{Math.} & Hall A \\ \hline
&& Miss Baker && Ms.~Clark && Mr.~Mill\\
\cline{3-3}\cline{5-5}\cline{7-7}
\rb{Tues.} & \rb{\LaTeX} & Conf.~Room & \rb{Fortran} & Conf~Room

& \rb{Math.} & Hall A \\ \hline
&& Dr.~Smith && Dr.~Jones && Dr.~Jones \\
\cline{3-3}\cline{5-5}\cline{7-7}
\rb{Wed.} & \rb{UNIX} & Comp. Ctr & \rb{C} & Hall A

& \rb{ComSci.} & Hall A \\ \hline
&& Miss Baker && Ms. Clark & \multicolumn{2}{c|}{} \\
\cline{3-3}\cline{5-5}

60

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-2-8

3.3 Languages using the Arabic alphabet

\rb{Fri.} & \rb{\LaTeX} & Conf.~Room & \rb{C++} & Conf.~Room
& \multicolumn{2}{c|}{\rb{canceled}}\\ \hline

\end{tabular}
mp 03.9-03.8 mp 02.8-02.7 mp 51.7-51.6
H%i% htaM mléf(f‘llch:ol\é nartroF I:IZIZ;BEES\(/:I BIEX || seuT
e It b
deleense i e € ook noc] MY |

You can get an idea of the many additional features that are available in the bidi by looking at the
examples accompanying the bidi package.

3.3 Languages using the Arabic alphabet

The Arabic alphabet (see http://en.wikipedia.org/wiki/Arabic_alphabet) is after the
Latin alphabet, the second-most widely used alphabet around the world. The alphabet was first used
to write texts in Arabic, in particular the Quran, the holy book of Islam. With the spread of Islam, it
came to be used to write many other languages, such as Persian, Urdu, Pashto, Baloch, Malay, Balti,
Brahui, Panjabi (in Pakistan), Kashmiri, Sindhi (in Pakistan), Uyghur (in China), Kazakh (in China),
Kyrgyz (in China), Azerbaijani (in Iran) and Kurdish in Iraq and Iran. In order to accommodate the
needs of these (often non-semitic) languages, new letters and other symbols were added to the original
alphabet.

Arabic is written from right to left, and is written in a cursive style of script. There are 28 basic
letters in the Arabic alphabet. In analogy with the rich set of typefaces in the Roman alphabet, Arabic
scripts [3] come in a number of different Arabic calligraphy styles (see Figure 3.2 for a few examples).

In the Arabic alphabet there are no distinct upper and lower case letter forms. Both printed and
written Arabic are cursive, with most of the letters directly connected to the letter that immediately
follows. There are some non-connecting letters that do not connect with the following letter, even in
the middle of a word. Each individual letter can have up to four distinct forms, depending on the
position of the letter within in a word or group of letters, as follows:

Initial: beginning of a word; or in the middle of a word, following a non-connecting letter.
Medial: between two connecting letters (non-connecting letters lack a medial form).
Final: at the end of a word following a connecting letter.

Isolated: at the end of a word following a non-connecting letter; or used independently.

Some letters appear almost the same in all four forms, while others display more variety. In ad-
dition, some letter combinations are written as ligatures (special shapes), including lam-alif. In many
cases, dots will be placed above or below the central part of a letter to distinguish it from other similar
letters.

The Arabic alphabet is an “impure” abjad since short vowels are not written, but long ones are.
Therefore the reader must know the language in order to restore the vowels. However, in editions of the

xetex-languages.tex,v: 2.02 2009/06/15

61

3 HANDLING ALL THOSE SCRIPTS

62

Different styles of the phrase “In the name of God” (top to bot-
tom):

e Rugahor Riqais characterized by clipped letters composed
of short straight lines and simple curves, as well as its [] I (
straight and even lines of text. It is clear and legible and c J w P
is the easiest script for daily handwriting. It is used in the 2
titles of books and magazines, and in commercial adver-

tisements.
» \ '
® Naskh, Naskhi or Nesih is the most commonly used style /.’. ‘:/3"(“‘ ’.I :
ic})lrﬂgfﬂ;lltmg Arabic, and usually the first to be taught to G A L R -

e Nasta'liq or Nastaleeq is one of the main genres of Islamic

calligraphy. It has short verticals with no serifs, and long

horizontal strokes. In is only used for titles and heading M w!d ,M
in writing Arabic, but a somewhat less elaborate version -~ +
serves as the preferred style for writing Persian, Pashto and

Urdu (and formerly for Ottoman Turkish)

e Thuluth is characterized by curved and oblique lines, with
one-third of each letter sloping. It is a large and elegant,
cursive script, used in medieval times on mosque decora-

-
tions, and to write the heading of surahs, Qurianic chap- e
ters.
A\ e\«
e Muhaqqaq or Muhakkak, a now rarely used calligraphic 3
script in Arabic derived from Thuluth by widening the

horizontal sections of the letters in the Thuluth script.

+*

e Kufiq or Kufic is the oldest calligraphic form of the various
Arabic scripts. It was already in use at the time of the emer-

gence of Islam so that the first copies of the Qur'an were P': .IJ Iu‘u:.'J I a'u EJ:I""'-'__"'I-I

written in this script. Kufic (the example shows Square Ku-
fiq) is characterized by straight lines and angles, often with
elongated verticals and horizontals. source: www . islamicarchitecture. org/art/inages/calligraphy/

Figure 3.2: Examples of six Arabic calligraphic styles

Qur’an or in didactic works vocalization marks are used, including a sign for vowel omission (sukin)
and one for gemination/doubling/lengthening of consonants ($adda).

3.3.1 ArabTgX: Arabic typography with TgX

Since 1992, when Klaus Lagally publicly released Version 2 of his arabtex package,' TgX users have
been able to typeset Arabic (and Hebrew) texts in a user-friendly way, and for many years ArabTgX
has become a standard typesetting tool for many Arabists. However, Lagally’s masterful, but extremely
complex, difficult to understand, and monolithic set of TEX macros makes it at present a somewhat out-
of-date piece of software. ArabTgX performs all typesetting tasks, from parsing the input encoding,
doing the contextual analysis, assembling the various forms of a character, and placing them on the
page from right to left, by TEX macros. Moreover, ArabTEX can only be used with its specially designed
fonts.

Today, with the advent of Unicode-encoded OpenType fonts, many of the formatting issues are
encoded in the OpenType fonts and taken care of by the operating system. Therefore, a Unicode-
based solution taking full advantage of the many nice Arabic OpenType fonts, is highly desirable. The
ArabX4TEX system, described in Section 3.3.2, is one way of solving the problem, while Youssef Jabri’s
arabi package [2] (available on CTAN in the directory /language/arabic/arabi/) provides an-

"The URL ftp://ftp.informatik.uni-stuttgart.de/pub/arabtex/arabtex.htm gives information about the
most recent version of the software (3.11 ,dated 2 July 2006, at the time of writing).

xetex-languages.tex,v: 2.02 2009/06/15

3.3 Languages using the Arabic alphabet

Table 3.2: ArabTgX’s input conventions for Arabic and Persian

a V| a | alif b| o |b ba’ Plo|P pa’
t| o |t bt St wa’ g z g gim
h d h| ha || _h C h ha d| > | d dal
d| 5 | d| dal | | ra’ z| 5|z zay
s| | 8| sin s 4| S §in sl e | s sad
d| 42 | d| dad t| b |t 1a’ z | b |z za’
ClLE | | s & | & gamn O] f fa
ql| & | q | gaf v|S |y va’ k| J |k kaf
g| S| gl gar 1 J |1 lam m| o, | m mim
n| O |n| nin h| o |h ha’ w9 | W waw
vyl s |y | ya Al s |a ‘alif T| & | h ta’
) magsiira marbuta

other.

Table 3.2 shows ArabTgX’s input convensions for the Arabic and Persian languages.

A small example of the use of ArabTgX is the following Arabic anecdote about Juha and the 10
donkeys (We will use the text of Example 3-3-2 also in the examples of ArabXf{TgX). The text is shown
fully vocalized (\fullvocalize) and is transliterated inline (\ t ranstrue). The title is centered and
typeset in bold (\setnashbf). The short Arabic text of the title is marked up inside the characters
sequence \< and >, while the longer Arabic text of the body of the story is enclosed inside an arabtext
environment. Compare the typeset output with the input text using the input conventions of Table 3.2.
Note the different forms of the letters, which are all composed by ArabTgX’s macros.

\usepackage{arabtex,atrans, nashbf}
\setarab\transtrue\fullvocalize

\setnashbf \centerline {\<"gu.hA wa-.hamIruhu al-‘a”“saraTu>}
\transtrue\setnash

\begin{arabtext}

i~starY “gu.hA “a”saraTa .hamIriN.

fari.ha bihA wa-sAgahA 'amAmahu,

_tumma rakiba wA.hidaN minhA.

wa-fI al-.t.tarIgli ‘adda .hamIrahu wa-huwa rAkibuN,
fa-wa”gadahA tis aTaN.

_tumma nazala wa- addahA fa-ra'AhA “a”saraTuN fa-gAla:

63

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

'am”sI wa-'aksibu .himAraN,
'af.dalu min 'an 'arkaba wa-'a hsara .himAraN.
\end{arabtext}

';'3:.:'.2;.‘. &?5 = guha wa-hamiruhu ’l-asaratu
iStara guha «asarata hamirin. fariha biha ;va-sdqahd amamahu, tumma rakiba wahidan minhda. wa-
ST 't-tarigi adda hamirahu wa-huwa)
shs G B BT G5 N Vel oy 5 Gl Gl g g e B B A
rakibun, fa-wagadaha tis<atan. tumma nazala wa-addaha fa-ra’aha asaratun fa-qala:
JE e B kizg 3 F s Bas $ oS
umsT wa-aksibu himaran, “afdalu min an arkaba wa-u_ffsara himaran.

e sty o5l & g Gl dste Sl el

3.3.2 ArabXglgX: Arabic typography with X3TgX

Frangois Charette’s arabxetex package is a XqTEX adaption of Klaus Lagally’s arabtex (see Section 3.3.1).
The main advantage of the package is that it allows you to use all OpenType encoded Arabic fonts that
you have available on your system. In particular, the package requires that you declare the default Arabic

font, \arabicfont, with fontspec’s \newfont family command.

The arabxetex package consists of a set of TECkit mappings (see Section 2.2.5) for converting in-
ternally from arabtex’s ASCII input convention to Unicode, and a BIEX style file (arabxetex.sty) that
provides a convenient user interface for typesetting in those languages. With respect to arabtex’s con-
ventions, arabxetex introduces several additions, and a few minor modifications (see the next section).

arabxetex relies on the package bidi (see Section 3.2).

The arabtex input encoding

Apart from ease and legibility, the arabtex input conventions offer several advantages for typesetting
in the Arabic script. As the examples in this section will show, indeed, it is straightforward to mix Uni-
code and arabtex encodings on input, and to switch between romanized transliteration and the Arabic
script on output. This comes in handy when one wants to input BTgX constructs inside Arabic sources
or handle complex multi-layer documents, such as critical editions, where footnotes and annotations
abound, and where dealing with a plain ASCII encoding is a genuine advantage, all the more so since

ArabTgX’s input conventions allow you a full control of the typographical details.

Support for languages using the Arabic script

Languages supported at present are the same as in arabtex, namely: Arabic, Maghribi Arabic, Farsi
(Persian), Urdu, Sindhi, Kashmiri, Ottoman Turkish, Kurdish, Jawi (Malay) and Uighur. arabxetex adds
support for several additional Unicode characters, so that some more languages are probably supported

de-facto as well (such as Western Punjabi).

For Arabic RL (from-right-to-left) texts the arabxetex package defines the arab environment —
and the equivalent \textarab command for short Arabic text insertions inside left-to-right input
texts." For other languages written in the Arabic alphabet similar environments and commands, are

available, as follows.

e \begin{farsi}[opt]...\end{farsi} \farsil[opt]{...}

'Similarly, for left-to-right “Latin” insertions inside Arabic text the \ textroman command can be used.

64

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-3-2

3.3 Languages using the Arabic alphabet

e \begin{kashmiri} [opt]...\end{kashmiri} \kashmiri[opt]{...}
e \begin{kurdish} [opt]...\end{kurdish} \kurdish[opt]{...}

e \begin{malay} [opt]...\end{malay} \malay[opt]{...}

e \begin{ottoman} [opt]...\end{ottoman} \ottoman [opt] {...}

e \begin{pashto} [opt]...\end{pashto} \pashto[opt] {...}

e \begin{sindhi} [opt]...\end{sindhi} \sindhi[opt]{...}

e \begin{urdu} [opt]...\end{urdu} \urdulopt]{...}

e \begin{uighur} [opt]...\end{uighur} \uighur[opt] {...}

For some entries in this list alternatives names exits, namely persian for farsi, turk for ottoman,
and jawi formalay.

The optional argument opt in all of these commands or environments can take one or more of
the following values. The equivalent command in ArabTgX is given between square brackets when it
exists.

novoc non-vocalized mode: no diacritics are added (the default global option) [\novocalize].
fullvoc fully vocalized: mode every short vowel written will generate the corresponding diacritical
mark [\fullvocalize].

voc vocalized mode: as fullvoc, but sikun and wasla will not be generated [\vocalize].

trans transliteration mode [\transtruel].

utf input in plain UTF-8 encoding. When not in transliteration mode, this option is in princi-
ple not strictly needed since one can mix ArabTgX’s ASCII input conventions and UTF-8
input.

Transliteration

At present ArabXgIEX offers arabtex transliteration mappings for Arabic, Persian, Urdu, Sindhi and
Pashto. It is forseen to implement alternative transliteration conventions for each language, as with
arabtex, e.g., ZDMG, Encyclopedia Iranica, etc. (a list of such schemes is at the URL http://
transliteration.eki.ee/pdf/Arabic.pdf)

As with arabtex (see Example 3-3-2), the transliteration is by default typeset in italics. This can
be customized ewith the \SetTranslitStyle command. In the transliteration one can capitalize
proper names by prefixing the word with the command \UC, e.g.,

al-shaykh al-‘alim Nasir al-Din al-Tast \usepackage{arabxetex}
\newfontfamily\arabicfont[Script=Arabic] {Scheherazade}
\newfontfamily\gentium{Gentium}
\SetTranslitStyle{\gentium\itshape}
\begin{arab} [trans]
al-"say h al-"Alim \UC na.sIr \UC al-dIn \UC al-.tUsI
\end{arab}

Since the transliteration is coded in Unicode we must ensure that all needed Latin extension char-
acters are available in the font. Therefore we used the font gentium in this example. Note also that in
the transliteration, the article al- is automatically skipped.

Emphasis

In Arabic emphasis is often indicated with a line over the text to be highlighted. In ArabXgIgX this
is achieved with the \aemph command. The following example shows how this works, first without

65

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

&21)3

P

66

to 1
to :J

vocalization and then with vocalization.

. \usepackage{arabxetex}

\newfontfamily\arabicfont[Script=Arabic,Scale=2.0]
{Scheherazade}

-

e r

\begin{arab} [novoclmi tAl: \aemph{45} darajaT\end{arab}
\begin{arab}[voc] mi tAl: \aemph{45} darajaT\end{arab}

ArabTgX's four representation variants

The following somewhat longer example uses the same text as Example 3-3-2, but shows the four pre-
sentation variants introduced previously one after the other. We use the Traditional Arabic font as de-
fault Arabic font (\arabicfont command) and Gentium as font for the non-Arabic text (with the
\setmainfont command, which sets the “main” font for the document).

\usepackage [no-math] { fontspec}

\setmainfont{Gentium} \usepackage{arabxetex} \newfontfamily\arabicfont
[Script=Arabic,Scale=1.2]{Traditional Arabic}

% Story of Juha and the 10 donkeys

\begin{arab}% No short vowels shown

\begin{center}\bfseries\large "“gu.hA wa-.hamIruhu al-'a”saraTu\end{center}
i~starY “gu.hA ‘a”“saraTa .hamIriN.

fari.ha bihA wa-sAgahA 'amAmahu, tumma rakiba wA.hidaN minhA.

wa-fI al-.t.tarIgi “adda .hamIrahu wa-huwa rAkibuN, fa-wa“gadahA tis aTaN.
_tumma nazala wa-'addahA fa-ra'AhA ‘a”saraTuN fa-gAla: \\

'am”sI wa-'aksibu .himAraN, 'af.dalu min 'an 'arkaba wa-'a hsara .himAraN.
\end{arab}

\begin{arab} [fullvoc]% All short vowels shown
\begin{center}\bfseries\large "“gu.hA wa-.hamIruhu al-'a”saraTu\end{center}
i~*starY “gu.hA “a”saraTa .hamIriN.

fari.ha bihA wa-sAgahA 'amAmahu, tumma rakiba wA.hidaN minhA.

wa-fI al-.t.tarIgi ‘adda .hamIrahu wa-huwa rAkibuN, fa-wa”“gadahA tis aTaN.
_tumma nazala wa-'addahA fa-ra'AhA ‘a”saraTuN fa-gAla: \\

'am”sI wa-'aksibu .himAraN, 'af.dalu min 'an 'arkaba wa-'a hsara .himAraN.
\end{arab}

\begin{arab}[voc] % All short vowels shown except for sukun and wasla
\begin{center}\bfseries\large "“gu.hA wa-.hamIruhu al-'a”saraTu\end{center}
i~starY "“gu.hA “a”saraTa .hamIriN.

fari.ha bihA wa-sAgahA 'amAmahu, tumma rakiba wA.hidaN minhA.

wa-fI al-.t.tarIgi ‘adda .hamIrahu wa-huwa rAkibuN, fa-wa”“gadahA tis aTaN.
_tumma nazala wa-'addahA fa-ra'AhA ‘a”saraTuN fa-gAla: \\

'am”sI wa-'aksibu .himAraN, 'af.dalu min 'an 'arkaba wa-'a hsara .himAraN.
\end{arab}

\begin{arab} [trans] % transliteration

\begin{center}\bfseries\large "“gu.hA wa-.hamIruhu al-'a”saraTu\end{center}
i~starY “gu.hA "a”saraTa .hamIriN.

fari.ha bihA wa-sAgahA 'amAmahu, tumma rakiba wA.hidaN minhA.

wa-fI al-.t.tarIgi "adda .hamIrahu wa-huwa rAkibuN, fa-wa”“gadahA tis aTaN.
_tumma nazala wa-'addahA fa-ra'AhA ‘a”saraTuN fa-gAla: \\

'am”sI wa-'aksibu .himAraN, 'af.dalu min 'an 'arkaba wa-'a hsara .himAraN.
\end{arab}

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-3-4

3.3 Languages using the Arabic alphabet

J5 ¢ Bad b b oSy pag op Do Gkl (3 Lt o)y ST Feanlal Lgslas L - 3 o 550 b (5 23
) o :Qu;sjs&uijfulfz
.U\A\f,ﬁ:’-\)_.jj‘ Q\O»J«'éﬂ c\)\.a\g_.,.M‘.{_}L;i\A

oo s . L os

G}QJJ\ OW}W
AR B ST TR e Bl) e Ty U BTG G e 2 S)
[$e BT BAES U
Jlhe T Ut of L Kl (U i..M/ STy ww

o
%
I

2
Fal Vpery bk
PO S (Vg ch\)).’aj SW S UJJJQJ\ @) A \4}\) [y :..'?43;\.;7 (VI L@_. Cf’ g >~ as 5)

K -
,,,,,,,,

G 5 eE BT ARG U5
Tl 2y 8T of e il (s LTy

@

Jjuha wa-hamiruhu al-‘asharatu

ishtara juha ‘asharata hamirin. fariha biha wa-sagahda amamahu,thumma rakiba wahidan minha. wa-ft
al-ttarigi ‘adda hamirahu wa-huwa rakibun, fa-wajadaha tis'atan. thumma nazala wa-‘addaha fa-ra’aha
‘asharatun fa-qala:

amshi wa-aksibu himaran, afdalu min an arkaba wa-akhsara himaran.

The arabxetex package loads the fontspec package, so that it is easy to select different fonts with Ara-
bic characters. The following example typeset an often-used greeting in various fonts. In the comment
line (starting with %), you can see the order in which the Arabic characters are input, i.e., the same
as in the Latin transcription with the \textroman command. The actual definition of the \Salam
command shows how the low-level display routines invert the Arabic letters automatically within each
word (without TgX having any control). Indeed, the input sequence of the characters is shown in the
commented line, where the character U+202D (LRO, for “left-to-right override”) has been prepended
before each word to force the characters to be displayed left-to-right. Then, the same greeting is dis-
played in five different Arabic fonts. Note the use of the \SCAR command which defines the script as

xetex-languages.tex,v: 2.02 2009/06/15

67

3 HANDLING ALL THOSE SCRIPTS

Arabic and scales the characters so that their form is more visible.

The most common Arabic lan-
guage greeting used in both Muslim
and Christian cultures means
Peace be upon you.

As-SalAmu "Alaykum

oS ek

S L

Sele p3L)
oSale o\l
oSule oMl

Exa.
\usepackage[no-mathlifontspect 36

\usepackagefarabxetex}

\setmainfont{Arial Unicode MS}
\providecommand\SCAR{Script=Arabic,Scale=2.}
\newfontfamily\arSch[\SCAR]{Scheherazade}
\newfontfamily\arTyp[\SCAR]{Arabic Typesetting}
\newfontfamily\arTra[\SCAR]{Traditional Arabic}
\newfontfamily\arTah[\SCAR]{Tahoma}
\newfontfamily\ar Ari[\SCAR]{Arial Unicode MS}
\let\arabicfont\arSch
%\providecommand\Salam{lJ_.Jl; ¢ Js9:3
\providecommand\Salam#,|J_.JI {:3JsJ¢

The most common Arabic language greeting used
in both Muslim and Christian cultures means
\underline{Peace be upon you}.

\beginfarab}[utf]

\textroman{As-SalAmu ‘Alaykumi\\
{\arSch\Salam}\newline{\arTyp\Salam}\newline
{\arTra\Salam}\newline{\arTah\Salam}\newline
f\arAri\Salam}

\end{arab}

The following example shows how easy it is to include BIEX commands inside Arabic text. For
the Arabic source (at the right) each word has been preceded by the LRO (U+202D, as explained for
Example 3-3-6) character to show the order (left-to-right) in which the Arabic characters are input.
Note how the f1ushleft environment typesets the Arabic text effectively f1ushright.

\color[rgbl{0,0, 1}

Ay (o >

2 My (S Ol s nj s 5 Sleg,n []

P e il 28 Oy s i ey 2By O [Y]
< o Olze T C‘;\i %)A"L:bg Olw &_Uj\ })’;u"
obw‘r’ @)

ﬁﬁﬁjw“-f ﬁ))”ﬁfspb‘b ‘_}A-b

Contextual analysis of hamza

\beginfarab}[utf]
\beginfcenter}

;Qg| (%) ugak‘sw \\[31’]’11’]’1]
\end{center?}
\begin{flushleft}

\fbox{1} s,stle 4 23l sps0

Tu..fb »S§ «__'_a‘ﬂga| »5%53. \\[2mm]

\Fbox{l} o 53 5550 DS, w5

§ 35,10 o&5es. |00 eor

5t #2lgys Laosen wlo 2Sesd 0

t Plod T plo gl

T 05z Sl w&s = \\[2mm]
\fbox{!? wisc 7ol g2 S05 @n ”J_‘)J«"Qgs
55" 3 19O D5 wesses-
\end{flushleft}

\end{arab}

Our next example is from the ArabX{TEX manual. As with arabtex, a contextual analysis of the input
encoding is performed (at the font-mapping level) to automatically determine the carrier of the hamza,

68

xetex-languages.tex,v: 2.02

2009/06/15

Exa.
3-3-7

Exa.
3-3-8

3.3 Languages using the Arabic alphabet

as illustrated next.

\usepackage{arabxetex}
\newfontfamily\arabicfont[Script=Arabic, Scale=1.0] {Scheherazade}
\begin{arab} [voc]

'amruN, 'ibiluN, 'u htuN, '"u ht"uN, '"Ugl"Id"Is, ra'suN, 'ar'asu,
sa'ala, gara'a, bu'suN, 'ab'usuN, ra'ufa, ru'asA'u, bi'ruN, 'as'ilaTuN,
ka'iba, gA'imuN, ri'AsaTuN, su'ila, samA'uN, barI'uN, sU'uN, bad'uN,
“say'uN, “say'iN, “say'aN, sA'ala, mas'alaTuN, saw'aTuN, ha.tI'aTuN,
jA'a, ridA'uN, ridA'aN, jI'a, radI'iN, sU'uN, .daw'uN, gay'iN, .zim'aN
, yvatasA'alUna, 'a dA'akum, 'a 'dA'ikum, 'a dA'ukum maqgrU'aT, mU'ibAt,
taw'am, yas'alu, 'a.sdig®A$\;$'uh u, ya®g”"I'u, s”U'ila

\end{arab}

G Eg Es gl c;}.}fd LE.ZAB L“(..vf\; u;{g 421.}«? L;‘.;: céL&; t;};‘} ‘:}.,:;_j c&e}: ‘Tji cJ‘L& ‘&U c&»‘\j wa\g‘sji ces (sl ‘:H L;ﬂ;
. P S R S B B . ‘. B e wi . p .
Léj}}iﬁ (,55‘.&;\ gv_«<;‘.,\.5‘ L(,SEL\.D‘ LC)}JE.L;JQ ¢ \fu.]g ‘5&; c‘;’.y g’ij& (5D (g c\;‘:) LE\:) il gc\.‘\:.]g;'- nE\f& callas (Jil (s (s ‘2&:‘

Jg‘}‘»t cﬁ.:—f;u: cﬁ—lg:\.ai (.:JL-.E nri)f LQL'{'}:

Typesetting the Qur'an
As the Holy Qur'an (s oT#) plays an important role in Islamic culture, its high-quality typesetting
is an important and rather complex task, and typeset examples of that book by professional typeset-
ters are often real works of art. Nowadays several OpenType fonts cover the full Unicode character
range for the Arabic script, and it is possible to achieve quite acceptable results. The following example
from the ArabTgX manual, which uses the fonts Scheherazade shows some typographic features which
characterize typical printed editions from Saudi Arabia.

Note in particular the definition of the hamza placed directly over the baseline instead as over the
alif, something that is usually not encoded in a Unicode font, but it is easily emulated by a TgX macro
(\hamzaB).

\usepackage{arabxetex}
\newfontfamily\arabicfont[Script=Arabic, Scale=1.0] {Scheherazade}
\newcommand{\hamzaB} {\char"200D\char"0640\raisebox{-.95ex} {\char"0654}\char"200D}
\begin{arab} [fullvoc]

mina 'l-qur'Ani 'l-karImi, sUraTu 'l-ssajdaTi 15--16:\\

'innamA yu'minu bi-\hamzaB a|"Ay atinA 'lla dIna 'i dA _dukkirUA bihA
_harrUA sujjadaN wa-sabba.hUA bi-.hamdi rabbihim wa-hum 1A yastakbirUna

SAJDA [[15]] tatajAfY a junUbuhum ‘ani 'l-ma.dAji’i yad Una rabbahum

_hawfaN wa-.tama aN wa-mimmA razaqn ahum yunfiqUna [[16]]\\

sUraTu 'l-bagaraTi 71--72:\\

gAla 'innahu, yaqUlu 'innahA bagaraTuN 11A dalUluN tu tIru 'l-'ar.da wa-1lA
tasqg.I 'l-.har ta musallamaTuN 11A “siyaTa fIhA|"JIM gAluW" 'l-\hamzaB a_ _ ana
ji'ta bi-'l-.haqgi|"JIM fa daba.hUhA wa-mA kAdduW" yaf'alUna [[71]] wa-'i d

gataltum nafsaN fa-udda$\,$ aral'| i"tum fIhA|"SLY wa-al-11 ahu mu hrijuN mmA
kun"tum taktumUna [[72]]
\end{arab}

D11 o BAREST B 4?4_;3? I 2
g T U3 1, 0 il o i e 1 ey ¥ 35 14 st LA T8 0 5 G 0
Y=y 8E E
2556 L 28 35 @ 0,k 1,38 g, 5l i 91106 G e ¥ s sl ans 5 N 8 05V 5 @ 0k B o6

B o5 2 e g by

69

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

The following example is a table from a grammar book showing prefix and suffix constructs for
Arabic verbs. It is seen how easy it is to mix the Latin and Arabic alphabets and use a large set of ETEX
commands. We only show the beginning of the source file. As default Arabic font we select Traditional
Arabic. Note how we introduce the Arabic environment arab in the preamble for the third, fifth, and
seventh columns (the [utf] option is implicit, since not needed).

% from http://en.wikipedia.org/wiki/Arabic_grammar
\documentclass[a4paper]{article}
\usepackage[no-math]{fontspec}
\usepackagefarray}
\usepackagefarabxetex}
\setmainfont{Minion Pro}
\newfontfamily\arabicfont[Script=Arabic,Scale=1.2]{Traditional Arabic}
\beginf{document}
\begin{tabular}{@§1*3{l>{\beginfarabf}r<{\endfarab}}}@{#}
\multicolumn{7}{c}{Prefixes and suffixes of the Arabic verb}\\
& \multicolumni{2}{c}{Perfective}
& \multicolumn{2}{c}{Imperfective}

& \multicolumn{2}{c}{Subjunctive and Jussive}\\
\multicolumn{7}{c}{\textbf{Singular}} A\
3rd (m.)
& STEM\textbfi{-a} & Joo”

& \textbf{ya$STEM & 3=

& \multicolumn{2}{c}{\emph{no written change}}\\

3rd (f.)
& STEM\textbfi-at} & Jooo’

& \textbf{ta-iSTEM & «3doo

& \multicolumn{2}{c}{\emphino written change}}\\

Prefixes and suffixes of the Arabic verb

Perfective Imperfective Subjunctive and Jussive
Singular
3rd (m.) STEM-a _s ya-STEM S no written change
3rd (f.) STEM-at & ta-STEM S no written change
2nd (m.) STEM-ta =S ta-STEM SS no written change
2nd (f) STEM-ti < ta-STEM-ina 8 ta-STEM-1 =Y
Ist STEM-tu &S a-STEM st no written change
Dual
3rd (m.) STEM-a S ya-STEM-ani 0L ya-STEM-a <
3rd (f) STEM-ata s ta-STEM-ani oGS$ ta-STEM-a Y
2nd (m. &f) STEM-tuma UZS ta-STEM-ani oGS ta-STEM-a ey
Plural
3rd (m.) STEM-i Isi ya-STEM-iina 0+5C ya-STEM-ii)5S
3rd (f) STEM-na & ya-STEM-na S no written change
2nd (m.) STEM-tum ~5 ta-STEM-iina 055 ta-STEM-a | eSS
2nd (f.) STEM-tunna 55 ta-STEM-na eSS no written change
Ist STEM-na s na-STEM S no written change

Another grammatical table showing derivations from sound verbs is our next example, where we

70

xetex-languages.tex,v: 2.02

2009/06/15

Exa.
3-3-9

Exa.
3-3-10

3.3 Languages using the Arabic alphabet

use Arabic Typesetting font.

Sound verbs (3rd sg. masc.) \usepackage [no-math] {fontspec}
Active voice Passive voice \usepackage{array}
Past Present Past Present \usepackage {arabxetex}
B I o4 . \setmainfont{Minion Pro}
I _ .
Af gjf qf f%f \newfontfamily\arabicfont [Script=Arabic,Scale=1.2]
11 o i S S {Arabic T i
o P S A ypesetting}
III Jeb Jeld Jegs Jelg ‘ .
v & . e . \begin{tabular}{@{}c*4{>{\begin{arab} [voc]}r<{\end{arab}}}@{}}
%f f%ﬁ %i f&% \multicolumn{5}{c}{\textbf{Sound verbs} (3rd sg. masc.)}
A . - S T
VI Jelis Jelizg Jess Jeli & \multicolumn{2}{c}{\textbf{Active voice}}
VII Jaisl e not available & \multicolumn{2}{c}{\textbf{Passive voice}}
vir - el NI NS
IX el Nz not available & \multicolumn{l}{c}{\emph{Past}}
X e Nats i i e & \multicolumn{1l}{c}{\emph{Present}}

& \multicolumn{l}{c}{\emph{Past}}
& \multicolumn{l}{c}{\emph{Present}}

\\

\textbf{I} &faala &yafalu &fuila

\textbf{II} &fa’ ‘ala syufa” "ilu &fu’ila
\textbf{III} &fA'ala syufA ilu &fU ila

\textbf{IV} &'af'ala syuf ilu s'ufila

\textbf{V} &tafa® "ala &yatafa "alu &tufu "ila
\textbf{VI} &tafA'ala &yatafA'alu &tufU'ila

\textbf{VII} &infa'ala &yanfa'ilu

syuf alu AN\
syufa “alu \\
syufA’alu AR\
syuf alu AN\
syutafa’ “alul\\
&yutafA alu \\

& \multicolumn{2}{c}{\emph{not available}}\\

\textbf{VIII}&ifta'ala &yafta ilu sgufti'ila

\textbf{IX} &if‘alla &yafallu

s&yufta“alu A\

& \multicolumn{2}{c}{\emph{not available}}\\
\textbf {X} &istaf'ala &yastaf ilu &ustuf 'ila &yustaf alu

\end{tabular}

We can even get more fancy and specify all Arabic characters on input by their Unicode code
position (this is often used on the Web with the character reference syntax sxxxx;, where xxxx is the
code position). The following table of countries in the Arab world is taken from the Web site indicated
below (only the first part of the source is shown). The Arial Unicode MS font is used for most of the
Arabic, except for the right-hand column in the table, for which Old Antic Bold has been selected. Note
the order of typesetting of the columns in this table (from right to left). In fact, in English this table
would have the following structure:

country capital people

North Africa Tunesia Tunis Tunesians
Algeria Algers Algerians

For the Arabic version shown below, these columns have to be mirrored by hand from left to right
by specifying the “people” columns entries first, then the “capital” column entries, etc.

% from http://www.arabiyya.l123.fr/spip/spip.php?articlel3
\documentclass[adpaper] {article}

\usepackage [no-math] { fontspec}

\usepackage{array}

\usepackage{arabxetex}

\setmainfont{Minion Pro}

\newfontfamily\arabicfont [Script=Arabic, Scale=1.0] {Arial Unicode MS}
\newfontfamily\Antic[Script=Arabic,Scale=1.2]{0ld Antic Bold}

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

\begin{document}
\begin{arab}

\renewcommand{\arraystretch}{1.1}
\setlength{\extrarowheight} {1mm}
\begin{tabular}{@{}>{\Antic}1l@{\quad}rrr@{}}
& \charl575\char1604\char1588\charl614\char1593\charl1618\charl576

& \char1575\char1604\char1593\char1575\char1589\charl1616\char1605\charl577

& \charl575\char1604\char1576\charl1614\char1604\charl1614\charl583

\\\hline

\charl576\char1604\charl1583\charl1575\char1606 \charl580\charl1575\charl1605\charl1593\charl577
\charl575\charl1604\char1583\char1608\char1604 \charl575\char1604\char1593\charl1585\charl576\charl1610\charl577
&\charl1578\char1608\charl1606\charl6l6\char1587\charl610\charl6l?7

& \char1578\char1600\char1615\char1608\charl1606\charl616\charl1587

& \char1578\char1600\char1615\char1608\charl1606\charl616\charl587 N\
& \charl580\charl614\charl586\charl575\char1574\charl616\charl1585\charl1610\charl617

& \char1575\char1604\char1580\charl1614\char1586\char1575\char1574\charl1616\charl585

& \charl1575\char1604\char1580\charl614\char1586\charl575\charl1574\charl1616\charl585

vog:idl dawlell BVA]| 3E3xal1
S Juiss ouiss dellgrallaca G al
Sulb> bl Sl

o ol L

NPT bl ool

linse ogissles lobiys0

;,Jb_g.w Ip_gJo;;'JI .;,I)_gidl J-u”-l'a'lls
Srae 5,2l gy

s> s> i dYLLallien>

Soso gindo Jlogall

5l olae sl —uma (IR
LB alel, o ls /
:SJBj” ‘_9-“*;-) l:,)_9j”

e slag) Sl

sl oo ol

wblbl bl saxialliy,elll Loyl el
A dolio ool

Sd9%uw oL dy>92ulldy yell

e lalawe olac

shd gl od

heS cus sl s Sl

i clelo oadl

503 wle Jrei[pyes will L

72

xetex-languages.tex,v: 2.02

2009/06/15

Exa.
3-3-12

Exa.
3-3-13

3.3 Languages using the Arabic alphabet

3.3.2.1 ArabXgIgX: typesetting Persian
The following is an example from the ArabTgX manual.

\usepackage{arabxetex}
\newfontfamily\arabicfont[Script=Arabic, Scale=1.0] {Scheherazade}
\newfontfamily\farsifont[Script=Arabic,Scale=1.1]{Farsi Simple Bold}
\begin{farsi} [voc]

_hwAb, xwI”s, hwod, "“ceH, naH, yal aH, hAneH, hAneHhA, hAneH-hA,
ketAb-e, U, rAh-e, t U, nAmeH-i, man, bInI-e, An, mard, pA-i, In,
zan, bAzU-i, In, zan, dAr-_i, man, _hU- i, t U, nAmeH- i, sormeH- i,
gofteH- i, ketAb-I, rAh-I, nAmeH-I, dAnA-I, pArU-I, dAnA-I-keH,
pArU-I-keH, rafteH-am, rafteH-Im, AnjA-st, U-st, t U-st, ketAb-I-st,
be-man, be-t U, be-An, be-In, be-insAn, beU, be-U, .sA.heb"| hAneH,
pas" |andAz, naw"|AmUz

\end{farsi}

cp’}j@ <J ‘Cﬂ'! ngg 4,?‘ Lu‘(nzj}:/: LU:‘ c!—:‘é Y @D c); ‘t_‘/&/fc(ﬁ’ ,J:‘} c&’,{[‘? L,«J:L; 4,-’1;‘, ‘,.; “~Z c);‘7 Luﬁ{,zf’ “_'4’;7
) B ol B Ll Ll (G SV (5] b (D (U il e b F (S e I e)

/‘}:',;l J‘ﬂ,u.:/: c,-:/(} ~_‘/:7[:4 L)Z{ c)i/(‘ULJ,L{ 40{‘/[-// cd[// c)'f./{ cu.:{: ‘%@/‘M}'; c‘:».d)' ;‘:,‘..4(5:7

3.3.2.2 ArabXgIgX: Various ways of typesetting Urdu

Like Persian (Farsi), Urdu is an Indo-European language written in the Arabic alphabet (see http:
//en.wikipedia.org/wiki/Urdu). However, Urdu letters (and their fonts) have forms that are
quite different from their “common” Arabic equivalents as the next short example shows.! We first use
an undifferentiated “Arabic” font (Code2000).

\usepackage{arabxetex}
\newfontfamily\arabicfont[Script=Arabic, Scale=1.0] {Scheherazade}
\newfontfamily\urdufont [Script=Arabic, Scale=1.1]{Code2000}
\begin{urdu} [novoc]

,ham “i”“sqg kE mArO.n kA itnA ,hI fasAna,h ,hae\\

rOnE kO na,hI.n kO'I ,ha.nsnE kO zamAna,h ,hael\par

va,h kiskA ta.sawwur ,hae ya,h kiskA fasAna,h ,hae\\

jO a”sk ,hae A.nkhO.n mE.n tasbI.h kA dAnA ,hae

\end{urdu}

= Plad o Lol 8 Ol S et o
ot Wls 55 Peop 855 o S5 Sy
:(AJLMS[S\M.SA..{C(JWIS\MSA:{
— Lls G’E*+w5 oM Q:Pﬁ;gﬂ — éLﬁlja
Then we show the same example with two other fonts which have been designed to show Urdu

variant of typesetting the letters. The example also shows that it is enough to change the definition of
the \urdufont command to contain the OpenType name of the font one actually want to use.

"The text is borrowed from http://tabish.freeshell.org/u-trans/urducode.html, a short page on ArabTEX
coding for Urdu.

73

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

o o) S é:? FOPEY
q_buKS@q)}d“@

Nafees Pakistani Naskh

The web page referenced in the footnote 1 refers to the Urdu font Urdu Nastaliq Unicode, which
comes with a few examples, one of which is a ghazal.! We use it to show the difference in typesetting of
the Urdu text with a “global” font for Arabic characters (Arial Unicode MS), seen at the left, and Urdu

calstlll sl G5
gabssy 2Hdy oy 2o
40\3‘—3‘ - ?4/}‘”\ - &
2l & uroe o s
Nafees Riqa

Nastaliq Unicode, specifically developed for typesetting Urdu texts, seen at the right.

J <
Ssl il Spt ol
Sol oot it So5 gaw

KJ .>3SE|_,_>CJL§_>E.>_.
Sl Pt oD 9) BBy

Cand, =595 ,S o SeCowb
Sl o it ol s gy

- sw -

) j).aél.;lJAJ{{ng;_J)gJJI
KPR & PN S

2ol S5 Suslils
Sol oo piin SU >

J@g>¢>wa,wu_§JJa_,¢l
Solpr b sl 2ol

l.wra_;J)O)L.ua_al.ia.Lo_,_a.,
Solpmomn saile 58

)lS) .>|_,.w|c,u_a.;um._o_9.>
LS!;J{}.JL)LJ_}L_S;LHJ)j}y_gg,u_b

b8

"The ghazal is a poetic form consisting of couplets which share a rhyme and a refrain. Each line must share the same meter.
Ghazals are traditionally expressions of love, separation and loneliness, a poetic expression of both the pain of loss or separation
and the beauty of love in spite of that pain. The form is ancient, originating in 10th century Persian verse. It is considered by many
to be one of the principal poetic forms the Persian civilization offered to the eastern Islamic world, seehttp: //en.wikipedia.
org/wiki/Ghazal. Nowadays the ghazal is most prominently a form of Urdu poetry, see http://www.urdupoetry.com.

74

S Lt
S S e L5

KT8z 28 o~
J”("u‘ﬂd"“‘u"”d‘”ﬂ“
sl IS S au et
Jﬂmuj}/f’éwfﬂ
uw:w’l»(rrdv/

S Sz o ind]

s bl £ LU
S e s
"‘g‘””“’d“”uf"}@’/)“"g
S B ol
brons b Sl =

S A
/K/J'/T;}@@VMJY

I I e o e

13

xetex-languages.tex,v: 2.02 2009/06/15

Exa.
3-3-14

3.3 Languages using the Arabic alphabet

3.3.3 Arabic presentation forms

The preferred Unicode block for the Arabic scripts is “Arabic” (U+0600-U+06FF), which is com-
plemented by the “Arabic Supplement” block (U+0750-U+077F), which adds letters mainly used in
Northern and Western African languages.

Languages written in the Arabic script have often a long tradition of cursive handwriting on
manuscripts. In particular, Arabic itself is closely linked to the spread of the Koran and, more generally,
Islamic culture. Therefore letter sequences, or even words have presentations that are different from
the linear combination of the composing letters. Moreover, these forms often depend on the language.
Therefore Unicode contains an “Arabic Presentation Forms-A” block (U+FB50-U+FDFD). This is subdi-
vided into several parts: glyphs for contextual forms of letters for Persian, Urdu, Sindhi, etc. (U+FB50-
U+FBB1), glyphs for contextual forms of letters for Central Asian languages (U+FBD3-U+FBE9), lig-
atures (two elements, U+FBEA-U+FD3D), punctuation (U+FD3E-U+FD3F), ligatures (three elements,
U+FD50-U+FDC7), Noncharacters (U+FDDO-U+FDEF), word ligatures (U+FDF0-U+FDFB), currency
sign (U+FDFC), and a symbol (U+FDFD).

There is also an “Arabic Presentation Forms-B” block (U+FE70-U+FEFF), which contains mainly
contextual shape variations that are important semantically for Arabic mathematics: glyphs for spacing
forms of Arabic points (U+FE70-U+FE7F), and basic glyphs for Arabic language contextual forms
(U+FE80-U+FEFC).

One example is U+FDF2 (Arabic ligature Allah isolated form), whose support in various fonts is
shown here. The issue of typesetting the name of God in Arabic, which is quite complex, is explained
in detail in the ArabXgTEX manual.

Fonts from or licensed to Microsoft: .
Times New Roman A _ Arial 4 — Courier New 4l — Microsoft Sans Serif CUJ| — Arial Unicode
MS d.Ul — Arabic Transparent & Slmphﬁed Arabic 4 — Simplified Arabic Fixed & — WinSoft

Serif Pro Medium A — Traditional Arabic & — Arabic Typesetting &) — Old Antic Bold J.I.l — Farsi
Simple Bold -

Urdu: Nastaleeq Like & PakType Nagsh 'I.IJJ, which contains also presentation forms for the following
Arabic ligatures:

Al

Asé ULFDFA (SALLALLAHOU ALAYNE WASALLAM)
:‘Ub‘b U+FDFB (JALLAJALALOUHOU)

Adobe (http://www.adobe.com): Adobe Arablc &

SIL (www.sil.org): Scheherazade & — Lateef & ‘
Arabeyes (www . arabeyes . org): KacstBook) KacstFarsi w/

Overview of all input conventions

Table 3.3 shows all complete list of all input character combinations used by arabxetex. The input se-
quences are ordered alphabetically following the most signicant letter of the ASCII input code. The
characters are accompanied by their (hexadecimal) Unicode number. The following color conventions
are used: red means that the glyph is the default for the given input code, and that it is available in all
languages except those where different glyphs are shown (in black). That default glyph is also displayed
in light gray under each language in which it is featured. Glyphs in blue are archaic forms (e.g., old
Urdu). An asterisk after the Unicode number means that the character was not available with arabtex.
Green glyphs are special: either they are used to represent defective writing or they provide characters

for other languages. Those shown in the column for Arabic are available by default.
Table 3.3: All arabxetex input conventions

75

xetex-languages.tex,v: 2.02 2009/06/15

3 HANDLING ALL THOSE SCRIPTS

76

code arab farsi urdu pashto sindhi ottoman kurdish kashmiri malay uighur
a 0648 L
\
- (Wil
A 0627 /
.a -
0654
A L
0672
a N
0670
A =
ta Iy
b 0628
B 0640
-b 066E
:b 067
<
bh 0680
c d [d
0681 062C 0686
c C & a
! 0685 0686 0686
~ a
c 0686
A &
ch 0687
. c
e 0682*
~ a
- c 06BF*
>
d 062F
>
-d 0636
3 2 >
d 0688 0689 068A
., d 2
068B*
~ 3 5
d 06EE* 0685+
_d 0630
:d >
068F
:d 0690*
3
dh 068C
2
»dh 068D
- - 5 b ¢
€ 0659 e 06D2+0658 06D0
[< « 5 <
E 06D2 0eD0 ol 06D2
ee &
ae & = & &
=
ke 06CD
e -
N e as
' P
E 06D3
£ 0641
-f 06A1
g < iy
06AF 0762
G 06AB
C
-9 063R
9 0683
: s
-:9 06B4*
5
r9 06AC . _
~ g ¢ C 4 c
9 062¢ 6A0 0638 0 0632

xetex-languages.tex,v: 2.02

2009/06/15

3.3 Languages using the Arabic alphabet

code arab farsi urdu pashto sindhi ottoman kurdish malay uighur
gh <
) a
h 0647 06BE
4 3 4
A 0647 06c3 0647
-h 0620
°
/D 06C1
~h
1 066E
1 osee ¢ ol ¢
LI
_* 0656
; a) J
J 062¢ 0698 0698
. d
| 0684
. o
jh 06A9
B =)
0643 06AA
° 0629 0642
C
— 063a
kh <
1 i
0644
.1 o
06B6*
~1 J
06B5
m 0645
N 4
miN 06FE
. 3
IIN 06FD
n 0646
aN 0648
uN 064c
iN 064D
-n 06BA
..n =
06B2*
Q o
/1 06BC 06BB
d s}
~ <o 4
n o
0683 068D 063D
.n S
06B1
- N e -
0657 7
0 > > > 33
ao - -
>
-0 6c4
.0 s
e N
_o -
Hel oo
06C6
. C
0 06FC
p 067E 0648
h
P 0626
q 0642
-9 066%

xetex-languages.tex,v: 2.02

2009/06/15

3 HANDLING ALL THOSE SCRIPTS

code arab farsi urdu pashto sindhi ottoman kurdish kashmiri malay uighur
r 0631
- r 0694* 0695
r J 4) P
4 0691 0693 0699 0694+
A b) J
r 06EF* 0692+
. J ¢
i 0697*
s 0633
o
-S 0635
g u;
rS 069 0634
~ b
s 0634
_s 0628
. o
:s 0698
t 062A
3
T 062a
-t 0637
t pus T pus
0679 067¢C 067D
_t 0628
<
th 0678
<
rth 0672
s
. / ¥
064F 7 06C7
s . L
5 o5l)
R 0648+0657
0655
L
U 0673
u N
— 0657
u Hp
06C8
. iod
U 06C7
Ze 3
v 0684 06CF
) 3
0648 0écB
~ 3
w 06Co*
v 06CA*
® 02 c
I I
064A o06cc
Yy
Y [
0649
Y% -
z 0632
.Z ot
0638
] 2
rz 0696 0636
N J
z 0698
_z 0630
. 5
$z 0636
' .
0621
&
0639

@ For Western Punjabi (Lahnda).

b Alternative form of s in Malay.

¢ For Dargwa (language of Dagestan).

4 For Kirgiz (and Uighur).

€ To transliterate dialects and foreign words.

I Alternative to _d.

Maghribi Arabic is identical to Arabic except for the three letters £, g and v which yield the glyphs

o (U+06A2), s (U+06a7), and s (U+06A5), respectively.

78

xetex-languages.tex,v: 2.02 2009/06/15

3.4 Typesetting Chinese

3.4 Typesetting Chinese

Ideographics CJK (Chinese, Japanese, Korean) scripts can be handled by X§TEX by directly using the
corresponding Unicode characters in the input stream. The folowing example shows a few Kanji char-
acters and their pronunciation. Note the use of the Color argument on the \font command (see
Section 2.3 for details of X§IEX’s extensions to TEX’s standard \ font command).

\font\han="STSong:color=660000" at 12pt BRG
\font\rom="Gentium:color=006600" at 8pt ka-ku
\newcommand\hc[2]{\begin{tabular}{l} i%ﬂf_[,
\han #1\\[-1mm]\rom #?2\end{tabular}} motto-mo
\begin{tabular}{l} EEY >
\hefZ3{ka-ku}\\ ff:iz‘
\hc{fRt}tmotto-mo}\\ i A
\hef £ fsai-goi\\ R
\he{f#ithatara-ku}\\ hatara-ku
\hc{i8}{umi} el
\end{tabular} umi

By default, X4IEX does not handle some important aspects of Chinese typesetting, such as auto-
matic font switching between Chinese and Western characters, skip adjustments for fullwidth punctu-
ations, or automatic skip insertions between Chinese and Western characters or math formulas.

3.4.1 The xeCJK Package

Wenchang Sun developed the xecyk package to help XgBTEX users typeset texts based on CJK scripts
more easily. The xeCJK package offers the following main features.

1. initializes different default fonts for CJK and other scripts;
2. spaces are automatically ignored between CJK characters;
3. supports several CJK punctuation processing modes;
4

can adjust the space between CJK and other characters automatically.

Nore that xeCJK needs version 0.9995. 0 of X§IgX or a later version.

3.4.1.1 Usage

\usepackage [Options] { xeCJK}

The options are the following.
BoldFont Create “synthetic bold” fonts for CJK characters. Will be overridden by specifying Bo1d-
Font in the definition of a CJK family.

SlantFont Create slanted fonts for CJK characters. Will be overridden by specifying ItalicFont
in the definition of a CJK family.

CJKnumber Load the CJKnumb package.
CJKaddspaces Add spaces between CJK and other characters if there is none.

CJKnormalspaces Ignore only spaces between CJK characters and leave spaces between CJK and
other characters untouched.

79

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

CJKchecksingle Avoid that a single Chinese character monopolizes a line.

\setCJKmainfont []{font name}
\setCJKsansfont []{font name}
\setCJKmonofont []{font name}

These three comamnds, which are analogues of \setmainfont, \setsansfont, and
\setmonofont, respectively, set different default fonts for CJK characters only, without affect-
ing other scripts.

When in the definition of a CJK typeface the TtalicFont= {...} option specifed an explicit
fontname, then the slantFont option will have no effect for this typeface. Similarly specifying an
explicit bold font with BoldFont= {...} in the font feature part suppresses the effect of the global
BoldFont option.

\setCJKfamilyfont{ familyname} []{font name}

This command defines a font for a CJK family which can be activated for typesetting by the command
\CJKfamily{ familyname}.

For a full description on the parameters and font name, we refer to the
package fontspec.

The next example shows the effect of some of these commands. For the default English typeface
TeX Gyre Termes is chosen, the default Chinese typeface is Bitstream CyberCJK, while (Song typeface),
while AR PL SungtiL GB is established as the CJK family “song”.

Exa.

This is default font abCD. \usepackage {xeCJK} 3-4-1
This is the bold font abCD. \setmainfont{TeX Gyre Termes}
This is the italicfont abCD. \setCJKmainfont {Bitstream CyberCJK}
And the bold italicfont abCD \setCJKfamilyfont{song}{AR PL Sungtil GB}
Finally this is Song typeface. This is default font abCD. \\

{\bfseries This is the bold font abCD.} \\

{\itshape This is the italic font abCD.} \\
{\bfseries\itshape And the bold italic font abCD.} \\
{\CJKfamily{song} Finally this is Song typeface.}

xeCJK offers improved Chinese and English spacing processing, and may avoid the single Chi-
nese character monopolizing a section of last line. The following example shows the effect of the
CJKchecksingle option.

\usepackage[boldfont,slantfont,CTKaddspaces, CTKchecksinglelfxeCTK}
\setCTKmainfont{Bitstream CyberCJK}

\providecommand\mytextixeCTK {7 hEZEEAVAIE, He]DIE R ENNFERE—BIIRE—1T. 3

“

\section*{First with the option '‘checksingle'}
\mytext\par\mytext\par\mytext

\section*{And now without the option ‘‘checksingle'}
\makeatletter
\let\xeCTK@checksingle\xeCTK@notchecksingle

\makeatother
\mytext\par\mytext\par\mytext

80

xetex-languages.tex,v: 2.02 2009/06/15

3.4 Typesetting Chinese

Exa

342 First with the option “checksingle”
)/(ieCJK otk T A S SR BE R A B, O] DAk R BRI R A S — B R e —
7.
)/(fCJK YOI T IR ST RIFE R AL B, O I DAk R BRI S — BRI R e —
7.
),(?CJK St T SR FE R A B, O AT DA o R Y S o — B R R —
7.

And now without the option “checksingle”

xeCIK el it 7 Fp 3 SCRIBE A0 B, 5 W] A E 9 BRI 7 0 o5 — B f e —

1.
xeCIK etk 7 i3 SCRIBE A0 B, 5 W] DAE 00 B0 N 7 0 o — B i e —
1.
xeCJK St 7 HP 3SR BE AL BE, AT DAlE o BRI gl 5 — BRI B e —
7.

3.4.1.2 Advanced settings

\punctstyle{PunctStyle}

Sets the CJK punctuation style. xeCJK predefines the following PunctSty1e styles for typesetting punc-
tuation.

quanjiao or fullwidth
typeset all punctuation in full-width, or two adjoint punctuation, the first is typeset in half-width;

banjiaoorhalfwidth
typeset all punctuation in half-width;

kaiming or mixedwidth
typeset all punctuation in half-width except the period, question, and exclamation marks;

hangmobanjiao or marginkerning
typeset punctuation at the end of lines in half-width.

ccT Use the CCT Chinese TgEX system format (http://freshmeat.net/projects/
ceeceetee/).

plain leave the punctuation untouched as-is.

\xeCJKallowbreakbetweenpuncts \xeCJKnobreakbetweenpuncts

By default, xeCJK prohibits line breaks between punctuation. The command
\xeCJKallowbreakbetweenpuncts allows line breaks, while \xeCJKnobreakbetweenpuncts
disallows them.

81

xetex-languages.tex,v: 2.02 2009/06/15

3

HANDLING ALL THOSE SCRIPTS

82

\xeCJKsetslantfactor{slant factor}
\xeCJKsetemboldenfactor{embolden factor}

Sets the slant (a value between —0.999 and 0.999) and embolden factors, respectively. Default settings
are

\xeCJKsetslantfactor{0.17}
\xeCJKsetemboldenfactor{4}

Note that both macros effect only CJK families that are defined subsequently in the BTEX source file.

\CJKnormalspaces \CJKaddspaces

By default, xeCJK leaves spaces between CJK and other characters untouched whereas it ignores spaces
between CJK characters. One can use \CJKaddspaces to add a space between CJK and other char-
acters if a blank space is not present and use \CJKnormalspaces to change back to the default.

\CJKsetecglue{value}

Allows you to control the spacing between Chinese and English. The default is \CJKsetecglue

\usepackage[boldfont,slantfont,CTKaddspacesl{xeCJTK3}
\setCTKmainfont{Bitstream CyberCJK}

\providecommand\mytexti{%

& English 13 {\itshape Chinese} /3 \LaTeX\

i8lb@ \emph{ltalic} 3 \textbf {F1A} a X b c d
\newline

K ZEnglishth3Z{\itshape Chinese}f3\LaTeX\
[Elf@\emph{ltalic} 37 \ textbf {FA}afiFb c d\newline
This is an example. XE—MFF
3

\CJKaddspaces
\CJTKsetecglue{\hskip 0.15em plus 0.05em minus 0.05em}
\mytext

\CJKaddspaces
\CJTKsetecgluef }
\mytext

\CJTKnormalspaces
\mytext

Exa.

X J2 English th 3¢ Chinese 15z INTEX [8]Ff Ttalic 04k a2 b c d 343
22 English b5 Chinese d1 3 WTEX [8] [ltalich SUF4E a$# b ¢ d

This is an example. X2 — |+

X 42 English 3¢ Chinese 3¢ BTEX [8fE Italic F X FEfE a $FE bed

X2 English 132 Chinese th=¢ BIEX [Hf@ Italic T L FE a E bed

This is an example. 3X&&—]+

X2 English 137 Chinese W37 IEX [8]fF Ttalic Xt a H¥ bed

X B Englishdr 3¢ Chinesedr XIATREX [8] [Italich X FEHad 240 ¢ d

This is an example. X2 —]+

xetex-languages.tex,v: 2.02 2009/06/15

3.4 Typesetting Chinese

2434 22 56 56 56 56 56 56 56 3k 3 2 56 56 56 56 56 56 5 6 3k 35 5 56 56 56 56 56 56 6 3 35 5 56 5 56 56 56 56 6 3k 35 2 56 5 56 56 56 56 6 5% 4 % X X6 56 6 6 6 % % 5% %

THE TEXT BELOW WAS TRANSLATED BY BABELFISH FROM THE CHINESE COMPUSCRIPT
ONCE I UNDERSTAND ITS MEANING THE TEXT WILL BE REWRITTEN

One can see that

e {<texts>} {<texts>} aswellasEnglish {<texts>} the middle blank space can retain
(cannot adjust), but it does not have the blank space, (see above then can according to need to
increase surface example).

e in the Chinese and the line the mathematical expression gap control is through defines
\everymath and \everydisplay realization, sometimes is possible invalid, The solution is the
manual Canadian blank space.

\xeCJKsetcharclass{first}{last}{class}

under default state, xeCJK 0x2000 — Between the OXFFFF character regards as the CJK writing, namely
the CJK correlation typeface establishment () to is only effective in this scope character. May use the
above great order change character category. For example, the following orders to establish 0x0080 —
Between the 0x2FFF character is the non-CJK writing, but 0x20000 — Between 0x30000 is the CJK
writing:

\xeCJKsetcharclass {"80} {"2FFF} {0}
\xeCJKsetcharclass {"20000} {"30000} {1}

attention: Last the parameter only can be 0 or 1.Do not change the character category easily.

\xeCJKcaption[<encoding>] {caption}

is similar with \CJKcaption, may choose the parameter to use to choose the code, default is UTF-8.

\xeCJKsetkern{punctuation 1}{punctuation 2}{kern}

if is unsatisfied to the default disposition, may use this order to establish between two punctuations the
distances.For example,
\xeCJKsetkern{:}{"}{0.3em}

243 25 26 56 56 56 56 26 56 3k 3k 35 5 56 56 56 56 56 6 3k 3k 35 5 56 56 56 56 56 6 b b 35 5 56 556 56 56 56 6 3k 3 5 2 5 5 56 56 56 6 > 5% 4 5 2 2 2 2 6 % > % % %

3.4.1.3 Compatibility

CJKfntef

Loads the CJKfntef (from the CJK package) after xeCJK to get various effects on CJK characters.
This package provides the commands \CJKunderline to draw aline under CJK characters, and
\CJKunderdot draw a dot below such characters. The effect of these two commands can be com-
bined, as the following example shows.

\usepackage[boldfont,slantfont]l{xeCTK}
\usepackage{CTKfntef}
\setCTKmainfont{Bitstream CyberCJK}

\setCTKmonofont{Bitstream CyberCJK}

INFChinesefF#$x=y $ 4%

INF Chinese 1% $x=y$ Z=

83

xetex-languages.tex,v: 2.02 2009/06/15

HANDLING ALL THOSE SCRIPTS

\CJTKunderlinef{XZChinese${Z$x=y$i0 FXIt%, B]LI\CTKunderdot{[@]Hi 03, }

\CTKunderlinef{iX¥ Chinese % $x=y$ 0 FXlt%, oJLI\CTKunderdot{EHf 0}, }

\CJTKunderline*{§iXF 0 X1, o] LI\CTKunderdot{EHtilm3. 3

\CJTKunderdotfXF 04, BJLI\CTKunderline{aHi 0 X3, 3

Exa

W5 Chinese % r =y 7EH& 3.4-4
W Chinese # % x = y 2%
7 Chinese $(°% = =yl FXI%%, BT LA A,

W F Chinese % © =y I FRIZk, mILAEIR IR,
WNFEINTFRIZ, 7T LAFR 0 A, S

T, FTLARES T 2%,

CJKnumber

To use the package CJKnumb, one can specify the option CJknumber while loading xeCJK.

1234512345 — F —F =/ MU+ 7.
67890 67890 75+ /\E L+

CJK

Exa.
\usepackage [CIJKnumber] {xeCJK} 3-4-5

\setmainfont{TeX Gyre Termes}
\setCJKmainfont {Bitstream CyberCJK}

12345 12345 \CJKnumber{12345}.

67890 $67890S \CJKnumber{67890}.

To be compatible with the CJK-related packages CJKnumb, CJKfntef and CJKulem, xeCJK reimplements
some macros defined in the package CJK. Therefore packagesxeCJK and CJK are incompatible and xeCJK
will prevent the user from loading CJK subsequently.

3.4.2 The zhspacing package

A more detailed and expert handling of Chinese typographic peculiarities is possible with Dian Yin’s
zhspacing package (available from http://code.google.com/p/zhspacing/), which takes ad-
vantage of the X4ITgX command \XeTeXinterchartoks.

XK. A CRIEnglishifgiRHE. 3¢
FE = mcHiRHE.

AR, S FIEnglishfiBHE.
FE = mc iR HE.

X CR . B English WTEHE. Al
E = mc® RiRHE.

84

xetex-languages.tex,v: 2.02

Exa

\usepackage[no-mathl{fontspec} 346
\setmainfont[BoldFont=SimHeil{SimSun}
\usepackagefzhspacing}
\raggedright\noindent

FHMik. IFEnglishANIEHE.
hZFO$E = me 2$HIEHE.

\par\noindent

BRI, PAFIEnglishATIRHE .
hZFO0$E = me 2$HIEHE.
\par\zhspacing\noindent

BRI . PAFEnglishATIRHE .
hZAO$E = me 2$HIEHE.

2009/06/15

Exa.
3-4-7

Exa.
3-4-8

3.4 Typesetting Chinese

\input zhspacing.sty
\zhspacing

input text

zhspacing can be used in both plain XgBTEX or XqTEX. In the latter case the source would look like

This example shows that spaces after Chinese characters are always ignored. Moreover, a noticable

skip is inserted between Chinese characters and English characters as well as math formulas. In fact, all
of the following inputs can produce mixed language output with skip automatically inserted between
Chinese and English characters.

EF’Engi, EPEngY,

i Eng X, 1 Eng X

\usepackage{zhspacing}\zhspacing
FEng 3, FEng X \begin{flushleft}

H Eng 3, # Eng 3¢, \emptyskipscheme

FEng3Z, Eng3.\\

HEng 3, B Eng 3Z\\
\simsunskipscheme

FEng3Z, & Eng3.\\

Eng 3, H Eng
\end{flushleft}

Look close at the inputs on the first line and you will see that they generate exactly the same output,

as do the inputs on the second line. This means that spaces following Chinese characters are ignored
if no spacing scheme is activated (\emptyskipscheme). However, after activation of the spacing
scheme (\simsunskipscheme) defined in the zhspacing package a skip is introduced for such a space.
Note that the skip between Eng and 3Z on the last two lines is somewhat wider than the skip between
th and Eng. That is because the space is produced by the space token after the letter g, not the skip
automatically inserted by zhspacing’s skip mechanism.

3.4.2.1 Punctuation skip adjustment

Proper Chinese typesetting requires consecutive fullwidth punctuations be compressed, and a linebreak
before or after a fullwidth punctuation will cut off the blank spaces of this punctuation, making it align
to the margin. zhspacing solved these problems, as well as proper prohibitions(F2). Here’s an example.

fbomif, « =AMUER” B BB AR AR I I S 2%t
g R A S WS RN T T I S
P15] Gy B ALY RN i
Sy RAEBNER . =MREE” BEBAR S
R PR .

3.4.2.2 Advanced usage

Fonts

zhspacing uses an extensible way of selecting fonts. The rules can be summarized as follows,

xetex-languages.tex,v: 2.02 2009/06/15

Western characters, i.e., those that are not CJKV ideograms nor CJKV punctuation use the default

Chinese characters use seperate fonts. Font changes in the document does not affect the font used
to display Chinese, unless you are using the NFSS scheme to change font series or shape.
When typesetting basic Chinese ideograms the command \ zhfont is executed.

85

3

HANDLING ALL THOSE SCRIPTS

When typesetting Chinese punctuations the command \ zhpunctfont is executed.

When typesetting CJK Ext-A characters the command \zhcjkextafont is executed.

When typesetting CJK Ext-B characters the command \zhcjkextbfont is executed.

When switching from non-Chinese to Chinese characters the command \zhs@savefont is ex-
ecuted, whereas when switching back the command \zhs@restorefont is executed.

zhspacing’s default definitions in XgBTEX for these commands are:

\newfontfamily\zhfont [BoldFont=SimHei] {SimSun}
\newfontfamily\zhpunctfont{SimSun}
\def\zhcjkextafont{\message{CJK Ext-A}}
\def\zhcjkextbfont{\message{CJK Ext-B}}
\def\zhs@savefont{\zhs@savef@nt{old}}
\def\zhs@restorefont{\zhs@restoref@nt{old}}

The internal macros \zhs@savef@nt and \zhs@restoref@nt save and restore the NFSS-related
information for the current font.

The extension CJK Ext-A/B fonts are not defined by default since not every user has necessarily
installed the fonts needed. The package author recommends to use Sun-ExtA and Sun-ExtB for these
fonts. You can define the ext-font macros manually in a similar way to the definition of \zhfont.

Skips

The zhspacing package uses a flexible skip mechanism which is based on a series of commands
rather than on skip registers. This allows the skips to vary according to the current font size. The
list of available skip commands follows. They are all defined according to the following model
\def\skipxxx{\hskip xxxxx}.

\skipzh Skip between adjacent Chinese characters.
\skipenzh Skip between a Chinese character and a Western character or a math formula.

\skipzhopen Skip before fullwidth opening punctuations, such as ™7, ” (7,7 7} etc.

\skipzhinteropen Skip before a fullwidth opening punctuation when preceded by another full-
width punctuation.

\skipzhlinestartopen Skip before a fullwidth opening punctuation when it occurs at the start
of a line.

»

\skipzhclose Skip after fullwidth closing punctuations, such as ™,) >, ”) 7, etc.

\skipzhinterclose Skip aftera fullwidth closing punctuation when followed by another fullwidth
punctuation.

\skipzhlineendclose Skip after a fullwidth closing punctuation when it occurs at the end of a
line.

> » N » N »

\skipzhjudou Skip after fullwidth judou(@i£) punctuations, suchas”, »”, 7" 7’ etc.

\skipzhinterjudou Skip after a fullwidth judou punctuation when followed by another fullwidth
punctuation.

\skipzhlineendjudou Skip after a fullwidth judou punctuation when it occurs at the end of a line.
\skipnegzhlinestartopen Negative skip to \skipzhlinestartopen.

\skipnegzhlineendclose Negative skip to \skipzhlineendclose.

xetex-languages.tex,v: 2.02 2009/06/15

3.4 Typesetting Chinese

\skipnegzhlineendjudou Negative skip to \skipzhlineendjudou.

The zhspacing package comes with three pre-defined skip schemes, namely
\simsunskipscheme, \emptyskipscheme and \haltskipscheme. The first scheme should
be suitable for font SimSun and other popular Chinese fonts used in China, which does not support
OpenType features of halt, and needs negative spaces be inserted before opening punctuations and
after closing or judou punctuations. The second scheme simply addes zero length. And the last one
should be fit for OpenType Chinese fonts supporting the halt feature such as Adobe Song Std, where
positive spaces should be inserted before or after certain punctuations. You can define your own skip
schemes for customization, of course.

Vertical Chinese

Vertical Chinese can be achieved by adding the raw feature vertical for the specified Chinese font.
An example is the floowing, which also shows what TgX thinks the boundingbox of the characters is.

3Eia9 A \usepackage[dvipdfm]{graphicx}
1;&‘ \usepackagefzhspacing}\zhspacing
Si’ \newfontfamily\zhfont[RawFeature={vertical:}]{SimSun}
\newfontfamily\zhpunctfont[RawFeature={vertical:
A +vert:+vhal}]{Adobe Song Std}
’ \haltskipscheme
#* \setlength\fboxsep{Ommj}
5 \fbox{\rotatebox{-90HFKEFE A, HREBCHNEE. B%
= \qquad
- \setlength\fboxsep{2mmj}
Elﬁ’] \fbox{\rotatebox{-90} {2 FEA, HEECHIAE. B
1

Note that in this example, in order to have proper vertical punctuations, we set \zhpunctfont
to use the Adobe Song Std font, which supports the vert feature, and change the skip scheme to
\haltskipscheme to match the vhal feature specified. Some Chinese fonts have bugs for typeset-
ting vertical Chinese containing punctuations. Moreover, often the baseline of vertical Chinese is not
correct, so that mixing Chinese and English in vertical mode can generate ugly results, and thus should
be avoided.

Some more vertical typesetting is shown in the following example, which also explains how easy
it is to make XgIEX print HTML character references, a possibility that comes in handy if you want to
typeset some text from a Web page, where non-Latin characters are sourced using this kind of repre-
sentation of Unicode characters, which is extremely portable (only ASCII characters are in the HTML

87

xetex-languages.tex,v: 2.02 2009/06/15

3 HANDLING ALL THOSE SCRIPTS

source), and is thus quite often used.

Exa.

— : = =i~ \usepackage [dvipdfm] {graphicx} 3-4-10
[This is English. ZTUIHAGETT o l\usepackage{fontspec}

\fontspec[Mapping=tex-text, Script=CJK] {Kozuka Mincho Pro-VI}

% macro hacking to read chars represented as character references
make & active
make # "other"

replace sequence &# by \char

\catcode \&=\active
\catcode \#=12
\def&#{\char}
\catcode \;=\active
\def; {\relax}

make ; active

o0 d° o0 d°o oe

and make it a no-operation

\fboxsepOpt
\fbox{This is English.
これ は 6#26085; 本 語 です。}

\fontspec [Mapping=tex-text,Vertical=RotatedGlyphs, Script=CJK] {Kozuka
Mincho Pro-VI}

\rotatebox{-90} {\fbox{This is English.
こ6れは 日 本 語 で す。 }}

3.4.2.3 Compatibility
Theoretically, zhspacing should be compatible with all macro packages, except those who change the
definition of \hskip and \penalty, in which case special treatment should be applied. I haven’t found
any conflict when using common packages such as hyperref and fancyhdr. However, ulem redefineds
\hskip and \penalty, and causes unexpected output. Use zhulem provided along with zhspacing
instead.

Using zhspacing with the ctex package needs some precautions, see the manual for more details
(http://www.ctex.org).

3.4.2.4 Character classes and class inheritance

The actual situation concerning Chinese typesetting is so complicated that it’s difficult to figure out
exactly how many classes are needed and what we should do when changing from this class to that. In
fact, in a more natural way, we can consider from the top down — first there are fullwidth and halfwidth
characters as well as boundaries — and construct a hierarchical forest where each node represents a
character class. In this way common behaviors can be performed between different families of classes,
and specific action can be taken for a particular class pair. That is the idea of class inheritance, the concept
behind zhspacing.

3.5 Examples of the use of Unicode

3.5.1 Unicode fonts and editors
e emacs and vi when adequate fonts are installed on the system (and made known to the applications)

e yudit, a freeware editor (http://yudit.org) for Linux and Microsoft Windows

88

xetex-languages.tex,v: 2.02 2009/06/15

3.5 Examples of the use of Unicode

e Resources for Unicode fonts

~ Bitstream Cyberbit!

- amore recent version of the above TITUS Cyberbit Basic (developed at the University of Frank-
furt, Germany, see the URL http://titus.uni-frankfurt.de/)

- the shareware fonts Code2000 for Unicode plane 0, Code2001 for plane 1, and Code2002 for
plane 2 (see http://www.code2000.net/)

- Arial Unicode MS, which comes with the Microsoft's Windows XP and Vista systems

- Web page WAZU JAPAN's Gallery of Unicode Fonts (http://www.wazu.jp/index.html)
- Web page of Luc Devroye (http://www.cccg.ca/~luc/fonts.html)

- Web page of Alan Wood (http://www.alanwood.net/unicode/fonts.html)

- Web page Unicode tools and fonts (http://www.unifont.org/)

3.5.2 Examples of Unicode texts

o The Office of the High Commissioner for Human Rights in Geneva publishes the Universal decla-
ration of human rights (http: //www.ohchr.org/french). The site of the Unicode Consortium
makes the Universal declaration of human rights available in 324 languages to show the power of
Unicode (http://www.unicode.org/udhr).

o The site www.sacred-texts.com contains hundreds of sacred texts, many in UTF-8. There is
Homer in ancient Greek (cla/homer/greek), a multi-language bible in English, French, He-
brew, and Latin (bib/poly), the Coran in Arabic and English (is1/uq), Confucius in Chinese
and English (cfu/cfu.htm), the Rig Veda in Sanskrit (hin/rvsan), etc.

e The Titus project of Indo-Germanic studies (titus.uni-frankfurt.de) and the Perseus
Project (http://www.perseus.tufts.edu/cache/perscoll Greco-Roman.html)con-
tain many classical texts.

ISee ftp://ftp.netscape.com/pub/communicator/extras/fonts/windows/cyberbit.zip

89

xetex-languages.tex,v: 2.02 2009/06/15

CHAPTER4

Unicode mathematics

4.1 Unicode for handling math across platforms and applications 91
4.2 XgieX handling mathematicsfonts L L 92

4.1 Unicode for handling math across platforms and applications
e Itisimportant to represent math correctly on the Web and in the various typesetting applications.
e TgX exists for books and MathML (presentation and context) for XML-enabled applications.

e Murray Sargent (Microsoft), member of the W3C MathML Working Group, and his collaborators
have developed an extention for OpenType fonts to enable them to handle math (their approach
is based on TEX’s math typesetting algorithm as described in Appendix G of the TgXBook [4]).
An additional OpenType MATH table contains the parameters needed to typeset math. This effort
resulted in the Cambria Math math font.

e Barbara Beeton, Asmus Freytag, and Murray Sargent wrote a paper Unicode support for mathe-
matics (www.unicode.org/reports/tr25/tr25-7.html) which describes the default math
properties for Unicode characters.

e Murray Sargent describes in the Unicode report Unicode Nearly Plain-Text Encoding of Mathematics
(unicode.org/notes/tn28/) how with a few additions to Unicode mathematical expressions
can usually be represented with a readable Unicode nearly plain-text (linear) format.

e Office 2007 now has a built-in math-engine (see Marray’s presentation Math Editing and
display in Office 2007 (research.microsoft.com/workshops/£s2006/presentations/
17 Sargent 071706.ppt)and his blog (http://blogs.msdn.com/murrays). This ad hoc
processor is based on TEXBook’s Appendix G algorithm and uses the Cambria Math math font
and uses the software component MathFont.dll to communicate between the various applications
programs.

e The Microsoft Word2007 work and the definition of the OpenType MATH table are unpublished.
Paul Topping, in the interest of the scientific community at large wrote a position paper Design Sci-
ence Proposal to Microsoft to Help STEM (Scientific/ Technical/ Engineering/Mathematical) Publishers
Work with Office 2007 Documents where he asks Microsoft to share the information in its specifi-
cations.!

ISee http://www.dessci.com/en/reference/white_papers/STMOffice2007Proposal.htm

4 UNICODE MATHEMATICS

4.2 XgIgX handling mathematics fonts
o XHTEX uses the algorithm in Appendix G of the TEXBook to typeset mathematics;
- for a “standard” TgX math font XqTEX use the metric information for each character in the

corresponding . t £m file, then xdvipdfmx refers to the . p£b file via the virtual font files (when
necessary) and the file dvipdfm.map,

- for an OpenType math font, such as Cambria Math, X§IEX reads the metric parameters in the
MATH table and transforms them into the values needed by the Appendix G algorithm.

e Currently X§IEX does not use a specific processor to handle OpenType math fonts, but perhaps
such support will later be included in the system middleware (ICU).

e Other Unicode math fonts:

- the font developed by STIX (Scientific and Technical Information Exchange font, see http://
www.stixfonts.org/). This is project where several scientific publishers have co-financed
a Unicode-based mathun font that contains over 8000 different glyphs

- Apostoulos Syropoulos (asyropolous@yahoo.com) is developing another font (Asana-
Math) with the help of fontforge that includes the OpenType MATH tables.

o Will Robertson is working on a BTEX package unicode-math to provide a simple interface to Open-
Type math fonts with ETEX.

92

xetex-mathematics.tex,v: 2.02 2009/06/15

Bibliography

Adobe Systems. Adobe Type 1 Font Format. Addison-Wesley, Reading, MA, 1990.

This so-called “White Book” contains the specification of Adobe’s Type 1 font format, including information about hints, the en-
cryption mechanism, encodings, and the flex procedure. Available electronically from
http://partners.adobe.com/public/developer/en/font/T1_SPEC.PDF

Youssef Jabri. “The Arabi system. TgX writes in Arabic and Farsi”. TUGboat, 27(4):147-153, 2006.

This article describes the Arabi package, which introduces support in the LPackbabel system for languages using the Arabic script, in

particular Arabic and Farsi. The package comes with a set of good-quality free fonts, but may also use commercial fonts. It supports

many 8-bit input encodings, e.g., CP-1256, ISO-8859-6 and Unicode UTF-8, and can typeset classical Arabic poetry.
http://www.tug.org/TUGboat/Articles/tb27-2/tb87jabri.pdf

Gabriel Mandel Khan. Arabic Script. Abbeville Press Publishers, New York, 2001.

This book provides a detailed look at the Arabic script and its calligraphy, an essential part of the Arabic culture. Since Arabic is the
language of the Koran, with the spread of Islam to large parts of the world, the Arabic script is now one of the world’s major forms
of writing. With the help of over 300 two-color and black-and-white pictures the author describes each letter, its history, meaning,
variants, and calligraphic adaptations, as well as its philosophical, theological, and cultural significance.

The book starts with a short introduction sketching the development of the Arabic alphabet and the various scripts in which it has
been written. Then, the first major part of the book, “The Letters of thelphabet”, is devoted to the treatment of individual letters and
their shapes which can vary depending on the letter’s position within a word. Over thirty different styles, or scripts, are illustrated for
each letter. The letter’s pronunciation, its characteristic in reciting the Koran, plus possible other cultural associations are defined.
The second major part of the book, “Styles, variants, and calligraphic adaptations”, provides an large set of historic examples of Arabic
writing. Finally, there is a glossary and an index.

Donald E. Knuth. The TgXbook, volume A of Computers and Typesetting. Addison-Wesley, Read-
ing, MA, 1986.

This book is the definitive user’s guide and complete reference manual for TeX.

Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris Rowley. The

ETgX Companion, Second Edition. Addison-Wesley, Reading, MA, 2004.

This book describes over 200 ETEX packages and presents a whole series of tips and tricks for using BIEX in both traditional and
modern typesetting, in particular how to customize layout features to your own needs—from phrases and paragraphs to headings,
lists, and pages. It provides expert advice on using LaTeX’s basic formatting tools to create all types of publication, from memos to en-
cyclopedias. It covers in depth important extension packages for tabular and technical typesetting, floats and captions, multi-column
layouts, including reference guides and discussion of the underlying typographic concepts. It details techniques for generating and
typesetting indexes, glossaries, and bibliographies, with their associated citations.

Peter D. Daniels and William Bright. The World’s Writing Systems. Oxford University Press, New
York, 1996.

A detailed description of the major historical and modern writing systems of the world. The more than eighty articles contributed by
expert scholars in the field are organized in twelve units, each dealing with a particular group of writing systems defined historically,

%4

(7]

geographically, or conceptually. Each unit begins with an introductory article providing the social and cultural context in which
the group of writing systems was created and developed. Articles on individual scripts detail the historical origin of the writing
system in question, its structure (with tables showing the forms of the written symbols), and its relationship to the phonology of
the corresponding spoken language. Each writing system is illustrated by a passage of text, accompanied by a romanized version, a
phonetic transcription, and a modern English translation. Each article concludes with a bibliography.

Units are arranged according to the chronological development of writing systems and their historical relationship within geograph-
ical areas. First, there is a discussion of the earliest scripts of the ancient Near East. Subsequent units focus on the scripts of East
Asia, the writing systems of Europe, Asia, and Africa that have descended from ancient West Semitic ("Phoenician”), and the scripts
of South and Southeast Asia. Other units deal with the recent and ongoing process of decipherment of ancient writing systems; the
adaptation of traditional scripts to new languages; new scripts invented in modern times; and graphic systems for numerical, music,
and movement notation.

The Unicode Consortium. The Unicode Standard, Version 5.0. Addison-Wesley, Reading, MA,
2007.

The reference guide of the Unicode Standard, a universal character-encoding scheme that defines a consistent way of encoding
multilingual text. Unicode is the default encoding of HTML and XML. The book explains the principles of operation and contains
images of the glyphs for all characters presently defined in Unicode.

Available for restricted use from: http://www.unicode.org/versions/Unicode5.0.0/

xetex-end.tex,v: 2.01 2009/06/15

Index of Commands
and Concepts

The index has been split into two parts. We start with a general index that covers all entries. We
end with an index of authors.

To make the indexes easier to use, the entries are distinguished by their “type”, and this is often
indicated by one of the following “type words” at the beginning of the main entry or a sub-entry:

boolean, counter, document class, env., file, file extension, font, key, key value, option,
package, program, rigid length, or syntax.

The absence of an explicit “type word” means that the “type” is either a BIgX “command” or simply a
“concept”

Use by, or in connection with, a particular package is indicated by adding the package name (in
parentheses) to an entry or sub-entry. There is one “virtual” package name, tlgc, that indicates com-
mands introduced only for illustrative purposes in this book.

A blue italic page number indicates that the command or concept is demonstrated in an example
on that page.

When there are several page numbers listed, bold face indicates a page containing important in-
formation about an entry, such as a definition or basic usage.

When looking for the position of an entry in the index, you need to realize that, when they come
at the start of a command or file extension, both the characters \ and . are ignored. All symbols come
before all letters and everything that starts with the @ character will appear immediately before a.

Index of Commands and Concepts

Symbols

. fonts.conf file, 23
. log file, 44
\<, 63
SHOME/ . fonts.conf file, 23

A

\active, 26

\aemph, 65, 66
Aleph program, 47
amsart document class, 55
amsbook document class, 55
amsmath package, 55, 56
amsthm package, 55

\arab, 66
arab env, 64, 65, 66, 68, 69, 70, 71
Arabi package, 93
arabi package, 62

\arabicfont, 64, 65, 66, 68, 69, 71, 73

arabtex package, 62-64, 65, 68, 75

arabtext env., 63

arabxetex package, i, xi, 64-78

arabxetex.sty package, 64

array package, 55, 71

article document class, 55

ATSUI program, 21, 30, 31, 34, 37
\autofootnoterule, 56, 59

B

babel package, 43
beamer document class, 55
beamerbaseauxtemplates package, 55
beamerbasetemplates package, 55
beamerthemebidilLTree package, 55
beamerthemelLTree package, 55
\beginL, 22
\beginR, 22
\bfseries, 80
bidi package, i, 55-61, 64
bidi2in1 package, 55
bidibeamer document class, 55

bidibeamerbaseauxtemplates package, 55

bidibeamerbasetemplates package, 55
bidimemoir document class, 55
bidimoderncv document class, 55
bidipresentation package, 55
book document class, 55
bookest document class, 55
booktabs package, 55

\bye, 85

C

\catcode, 26
\char, 25
\chardef, 25
CJK package, 83, 84
\CJKaddspaces, 82, 83
CJKchecksingle option, 80
\CJKfamily, 80
CJKfntef package, 83, 84
\CJKnormalspaces, 82, 83

CJKnumb package, 79, 84
\CJKnumber, 84
\CJKsetecglue, 82, 83

CJKulem package, 84
\CJKunderdot, 83
\CJKunderline, 83
\cline, 60

color package, 58

crop package, 22

ctex package, 88

cvthemebidicasual package, 55

cvthemebidiclassic package, 55

cvthemecasual package, 55

cvthemeclassic package, 55

cyr-lat-iso9 file, 29

cyr-lat-iso9.tex file, 29

D

dcolumn package, 55
\defaultfontfeatures, 44

draftwatermark package, 55

dvipdfm.map file, 92

dvipdfmx program, 21

dvips program, 1, 27

E

emacs program, 88
\emptyskipscheme, 85, 87
\endlL, 22
\endR, 22

euenc package, 43
\everydisplay, 83
\everymath, 83

extbook document class, 55

F

fancyhdr package, 55, 88
\farsi, 64
farsi env, 64, 73
\farsifont, 73
\fbox, 68, 88
fc-cache program, 24
fc-list program, 24
fc-match program, 24
. £d file extension, 22
flushleft env, 68
fmultico package, 57
\font, 21, 27, 29, 34-36, 38, 79
fontconfig program, 23, 24, 27, 31
fontforge program, 92
fontinst package, 43
fontinst program, 21
fonts.conf file, 23, 24
\fontspec, 44, 45, 46

fontspec package, ii, xi, 22, 33, 43-46, 64, 66-68, 71, 80, 84, 88

fontspec.cfq file, 43, 44

FontTools program, 16
\footnote, 59

freetype program, 23, 32

frhyph.tex file, 26

xetex-end.tex,v: 2.01 2009/06/15

Index of Commands and Concepts

\fullvocalize, 63,65 myfont.ttx file, 17
myfontmods. ttx file, 17
G
geometry package, 22 N
graphics package, 22 \newfontface, 45, 46
graphicx package, 55 \newfontfamily, 45, 64, 65, 66, 68, 69, 71, 73, 86, 87
\novocalize, 65
H
\haltskipscheme, 87 0
\hamzaB, 69 Office program, 12, 13
hhline package, 55 Omega program, 47
\hline, 60 OpenOffice program, 14
\hskip, 88 Openoffice program, 13

hyperref package, 22, 88

I

ICU program, 21, 26, 29-31, 34, 37, 46, 92
\ifthenelse, 38
\input, 85
\itshape, 80

K

\kashmiri, 65
kashmiri env., 65
kpathsea program, 33

\kurdish, 65
kurdish env., 65

L

\lccode, 26

\leftfootnoterule, 59
listings package, 55
localfonts.conf file, 23, 24
longtable package, 55

\LR, 57

\LRE, 57
LTR env., 57

\LTRdblcol, 57

\LTRfootnote, 59

M

\malay, 65
malay env., 65
\mathalpha, 39
\mathbin, 39
\mathclose, 39
MathFont.dll program, 91
\mathop, 39
\mathopen, 39
\mathord, 39
mathpazo package, 43
\mathpunct, 39
\mathrel, 39
memoir document class, 55
metalogo package, 43
minitoc package, 55
moderncv document class, 55
multicol package, 57
multicols env, 57
\multicolumn, 60, 71
multirow package, 55

OpenType-info.tex file, 39
otfinfo program, 13

\ottoman, 65

ottoman env., 65

P

packages
amsmath, 55, 56
amsthm, 55
Arabi, 93
arabi, 62

arabtex, 62-64, 65, 68, 75

arabxetex, ii, xi, 64-78
arabxetex.sty, 64
array, 55,71

babel, 43

beamerbaseauxtemplates, 55
beamerbasetemplates, 55
beamerthemebidilLTree, 55

beamerthemelLTree, 55
bidi, ii, 55-61, 64
bidi2in1, 55

bidibeamerbaseauxtemplates, 55
bidibeamerbasetemplates, 55

bidipresentation, 55
booktabs, 55

CJK, 83, 84

CJKfntef, 83, 84
CJKnumb, 79, 84
CJKulem, 84

color, 58

crop, 22

ctex, 88
cvthemebidicasual, 55
cvthemebidiclassic, 55
cvthemecasual, 55
cvthemeclassic, 55
dcolumn, 55
draftwatermark, 55
euenc, 43

fancyhdr, 55, 88
fmultico, 57

fontinst, 43

fontspec, ii, xi, 22, 33, 43-46, 64, 6668, 71, 80, 84, 88

geometry, 22
graphics, 22
graphicx, 55
hhline, 55
hyperref, 22, 88

xetex-end.tex,v: 2.01 2009/06/15

97

Index of Commands and Concepts

98

packages (cont.)
listings, 55
longtable, 55
mathpazo, 43
metalogo, 43
minitoc, 55
multicol, 57
multirow, 55
pdfpages, 55
paof, 22
pstricks, 55
ragged2e, 55
stabular, 55
supertabular, 55
tabls, 55
tabularx, 55
tabulary, 55
threeparttable, 55
tikz, 55
tlgc, 95
tocloft, 55
tocstyle, 55
ulem, 88
unicode-math, xi, 43, 92
vwcol, 58
wrapfig, 55
xcolor, 22, 58
xeCJK, 79-84
xecjk, ii
xecolour, 58
xecyk, 79
xltxtra, 43
xunicode, 43, 56
zhspacing, ii, xi, 84-88
zhulem, 88
\pashto, 65
pashto env., 65
\pdflastxpos, 42
\pdflastypos, 42
pdflatex program, 2
\pdfpageheight, 42
pdfpages package, 55
\pdfpagewidth, 42
\pdfsavepos, 42
\penalty, 88
. pfb file extension, 92
pgf package, 22
\pounds, 28
pstricks package, 55
\punctstyle, 81

R

ragged2e package, 55
\raisebox, 60

rapport3 document class, 55
\rcases, 59

refrep document class, 55

report document class, 55
\rightfootnoterule, 59
\RL, 57

rldocument option, 56
\RLE, 57

\rmfamily, 45

\rotatebox, 87, 88
RTL env., 57

\RTLdblcol, 56, 57

RTLdocument option, 56

\RTLfootnote, 59

S

\Salam, 67

scrartcl document class, 55
scrbook document class, 55
scrreprt document class, 55

\setarab, 63

\setCJKfamilyfont, 80

\setCJKmainfont, 80, 82-84

\setCJKmonofont, 80
\setCJKsansfont, 80
\setfootnotelR, 59
\setfootnoteRL, 59
\setLR, 56

\setLTR, 56, 57

\setmainfont, 22, 44, 45, 66, 68, 71, 80, 84

\setmonofont, 44, 45, 80

\setnash, 63
\setnashbf, 63
\setRL, 56
\setRTL, 56-60

\setsansfont, 44, 45, 80
\SetTranslitStyle, 65

\sfcode, 26
\sffamily, 45

\simsunskipscheme, 85, 87

\sindhi, 65
sindhi env, 65
\skipenzh, 86

\skipnegzhlineendclose, 86
\skipnegzhlineendjudou, 87
\skipnegzhlinestartopen, 86

\skipzh, 86
\skipzhclose, 86

\skipzhinterclose, 86
\skipzhinterjudou, 86

\skipzhinteropen, 86
\skipzhjudou, 86

\skipzhlineendclose, 86

\skipzhlineendjudou, 86, 87
\skipzhlinestartopen, 86

\skipzhopen, 86
stabular package, 55
supertabular package, 55

T

tabls package, 55
tabular env., 60, 71
tabularx package, 55
tabulary package, 55
TECkit program, 28, 64
tex program, 33
tex-text-tec file, 28
tex-text.map file, 28
tex-text.tec file, 28
texmf file, 27

xetex-end.tex,v: 2.01 2009/06/15

Index of Commands and Concepts

\text, 59 xecolour package, 58
\textarab, 64 xecyk package, 79
\textroman, 64, 67 xelatex program, 19-95
\textwidth, 59 \XeTeX, 41, 43
\textwidthfootnoterule, 59 XeTeX program, 19, 21
\TeXXeTstate=1, 22 xetex program, 19-95
.t £m file extension, 22, 37, 43, 92 \XeTeXcharclass, 41
tfm file, 27 \XeTeXcharglyph, 37
threeparttable package, 55 \XeTexXdashbreakstate, 41
tikz package, 55 \XeTeXdefaultencoding, 41
tlgc package, 95 \XeTeXdelcode, 39
tocloft package, 55 \XeTeXdelcodenum, 39
tocstyle package, 55 \XeTeXdelimiter, 39
\transtrue, 63, 65 \XeTeXfonttype, 37, 38
. ttc file extension, 18 \XeTeXglyph, 36, 37
ttc2ttf program, 18 \XeTeXglyphindex, 36, 37
ttx program, 16, 17 \XeTeXinputencoding, 26, 41
\XeTeXinterchartokenstate, 41
U \XeTeXinterchartoks, 41, 84
\UC, 65 \XeTeXlinebreaklocale, 42
\XeTeXlinebreakpenalty, 42
\uccode, 26 i A
\uighur, 65 \XeTeXlinebreakskip, 30, 42

\XeTeXmathchardef, 39
\XeTeXmathcode, 39
\XeTeXmathcodenum, 39
\XeTeXOTcountfeatures, 38
\XeTeXOTcountlanguages, 38
\XeTeXOTcountscripts, 38
\XeTeXOTfeaturetag, 39
\XeTeXOTlanguagetag, 38
\XeTeXOTscripttag, 38
\XeTeXpdffile, 42
\XeTeXpicfile, 42
\XeTeXradical, 41
\XeTeXrevision, 26, 41

uighur env., 65

ulem package, 88

unicode-math package, xi, 43, 92
\unsetfootnoteRL, 59
\unsetLTR, 56
\unsetRL, 56
\unsetRTL, 56
\urdu, 65

urdu env., 65, 73
\urdufont, 73
\usepackage, 55

v \XeTeXupwardsmode, 42
.vf file extension, 22, 43 \XeTeXuseglyphmetrics, 36

vi program, 88 \XeTeXuseglyphmetricsfont, 36
\vocalize, 65 \XeTeXversion, 4]

vwcol env., 58 xltxtra package, 43

vweol package, 58 xu-frhyph.tex file, 26

xu-hyphen file, 26
W xu-tl.tex file, 26

W32tex program, 21 xunicode package, 43, 56

Web2C program, 33
wrapfig package, 55 Y

yudit program, 88

X

xcolor package, 22, 58 Z

. xdv file extension, 27 \zhcjkextafont, 86

xdvipdfmx program, 27, 32, 33, 92 \zhcjkextbfont, 86

xeCJK package, 79-84 \zhfont, 85, 86, 87

xecjk package, ii \zhpunctfont, 86, 87
\xeCJKallowbreakbetweenpuncts, 81 \zhs@restoref@nt, 86
\xeCJKcaption, 83 \zhs@restorefont, 86
\xeCJKnobreakbetweenpuncts, 81 \zhs@savef@nt, 86
\xeCJKsetcharclass, 83 \zhs@savefont, 86
\xeCJKsetemboldenfactor, 82 \zhspacing, 84, 85, 87
\xeCJKsetkern, 83 zhspacing package, ii, xi, 84-88
\xeCJKsetslantfactor, 82 zhulem package, 88

xetex-end.tex,v: 2.01 2009/06/15

Beeton, Barbara, 91
Berry, Karl, 27, 33
Buchbinder, Adam, xi

Charette, Francois, ii, xi, 64
Cho, Jin-Hwan, 21

Devroye, Luc, 54

Ferres, Leo, ii, xi
Freytag, Asmus, 91

Goossens, Michel, 93

Jabri, Youssef, 62

Kabel, Rik, xi

Kakuto, Akira, 21

Kew, Jonathan, ii, xi, 19, 21, 43, 47
Khalighi, Vafa, ii, 55

Knuth, Donald, 1, 93

Lagally, Klaus, 62, 64
McCreedy, David, 54

Mittelbach, Frank, 93
Moore, Ross, 21, 43

People

Piska, Karel, ii, xi

Robertson, Will, ii, 22, 43, 92
Sargent, Murray, 91

Shigeru, Miyata, 21

Sun, Wenchang, 79

Topping, Paul, 91

Weiss, Mimi, 54
Wood, Alan, 5

Yin, Dian, ii, xi, 84

	68-554-8_1-1-H/R
	Linie 554
	Holzminden - Beverungen Holzminden - Boffzen - Fürstenberg - Beverungen
	Montag - Freitag
	Samstag

	Beverungen - Holzminden Beverungen - Fürstenberg - Boffzen - Holzminden
	Montag - Freitag
	Samstag

